May 24, 2019

Alex Baylor
Environmental Specialist
PGCPS Environmental Safety Office
13306 Old Marlboro Pike
Upper Marlboro, MD 20772
Alex.baylor@pgcps.org

Re: IAQ and Mold Assessment Report
Prince George’s County Public Schools
Fort Foote Elementary School

Dear Mr. Baylor,

Windjammer Environmental LLC (Windjammer) was contracted to conduct a visual assessment, measure indoor air quality (IAQ) parameters and sample for mold in a limited number of areas at the Fort Foote Elementary School located at 8300 Oxon Hill Road, Fort Washington, MD 20744. This assessment is intended to check on effectiveness of operations activities that are focused on preventing conditions that can lead to the development of an environment which is historically associated with an increase in reports of poor IAQ. This assessment was conducted by Certified Industrial Hygienist (CIH) Katherine Dietrich on May 15, 2019.

This assessment included:

- Measurement of temperature, relative humidity, carbon dioxide (CO₂) and carbon monoxide (CO)
- Collection of nonviable airborne mold samples; and
- Visual assessment of select areas.

Methods
A TSI IAQ-Calc Model 7545 was used to measure temperature, relative humidity, carbon dioxide (CO₂) and carbon monoxide (CO).

Air samples for non-viable airborne fungi were collected on Air-O-Cell cassettes using a Zefon Bio-Pump Plus portable sampler calibrated to collect 15 liters of air per minute (lpm). The sampling period for the all samples was five minutes.

Direct read instrumentation used were calibrated in accordance with the manufacturer’s specifications prior to the start of this assessment.
All samples collected were hand delivered to and analyzed by AMA of Lanham, MD. AMA is accredited by the American Industrial Hygiene Association (AIHA) for microbial analysis and participates in the Environmental Microbiology Laboratory Accreditation Program (EMLAP).

Guidance

The Occupational Safety and Health Administration’s (OSHA) Permissible Exposure Limits (PELs) are the only enforceable regulatory standards for indoor air quality. However, other organizations such as the American Society of Heating Refrigeration and Air Conditioning Engineers (ASHRAE) and the Environmental Protection Agency (EPA) have developed widely accepted consensus standards that can be used to assess the suitability of indoor air quality.

ASHRAE Standards

62.1-2013 and 55-2013 are consensus standards that outline acceptable practices for the design of ventilation systems in commercial and residential structures. Both documents were developed "to specify minimum ventilation rates and indoor air quality that will be acceptable to human occupants and are intended to minimize the potential for adverse health effects.” The standards also consider chemical, physical, and biological contaminants and other factors that impact indoor air quality and affect occupant health and comfort.

ASHRAE 55-2013 recommends temperature and relative humidity ranges that are considered suitable for indoor air quality. Recommended ranges are as follows:

- Temperature be maintained between 67 and 82 degrees Fahrenheit (°F)
- Relative humidity to be maintained below 65%

Carbon Dioxide

CO₂ is widely used as a surrogate gas in the assessment of indoor air quality. It is a byproduct of respiration and can be used to determine the effectiveness and/or management of building ventilation systems. Based on ASHRAE recommendations, indoor CO₂ concentrations that are below 1000 parts per million (ppm) or have a differential of less than 700 ppm compared to outside concentrations are considered to be suitable.

For example, if outside CO₂ concentrations are measured at 380 ppm, then indoor CO₂ concentrations measured up to 1080 ppm would be considered suitable.

Carbon Monoxide

OSHA has established a PEL for CO of 35 ppm over a time weighted average (TWA) of 8 hours and a ceiling CO exposure limit of 200 ppm in a five-minute period. ASHRAE has adopted the EPA National Ambient Air Quality Standard (NAAQS) for CO of 9 ppm when evaluating indoor air quality. In nonindustrial settings, the NAAQS standard is commonly used to assess the suitability of IAQ.
Nonviable Airborne Fungi (Mold)
There are no set regulatory limits established for acceptable airborne fungi levels. However, indoor levels within schools and offices are generally lower than outdoor levels. The distribution of airborne species of fungi found in indoor air is expected to be similar in proportion to outside distributions. The type and concentrations of the airborne microorganisms can be used to determine if there is a potential hazard to occupants which requires action.

Findings

Indoor Air Quality
Indoor air quality measurements collected were satisfactory with respect to temperature, relative humidity, carbon dioxide (CO₂), and carbon monoxide (CO). Recorded indoor air quality results are summarized in the following Table.

<table>
<thead>
<tr>
<th>Measurement Location</th>
<th>Temperature (°F)</th>
<th>Relative Humidity (%)</th>
<th>CO₂ (ppm)</th>
<th>CO (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lobby</td>
<td>67.3</td>
<td>44.7</td>
<td>511</td>
<td>0.0</td>
</tr>
<tr>
<td>Classroom 1*</td>
<td>67.4</td>
<td>51.3</td>
<td>593</td>
<td>0.0</td>
</tr>
<tr>
<td>Room 10, Computer*</td>
<td>69.0</td>
<td>46.6</td>
<td>563</td>
<td>0.0</td>
</tr>
<tr>
<td>Classroom 15*</td>
<td>70.5</td>
<td>50.6</td>
<td>1022</td>
<td>0.0</td>
</tr>
<tr>
<td>Classroom 22*</td>
<td>70.6</td>
<td>48.7</td>
<td>735</td>
<td>0.0</td>
</tr>
<tr>
<td>Library*</td>
<td>68.1</td>
<td>50.3</td>
<td>516</td>
<td>0.0</td>
</tr>
<tr>
<td>Cafetorium</td>
<td>65.7</td>
<td>51.2</td>
<td>548</td>
<td>0.0</td>
</tr>
<tr>
<td>Outdoors*</td>
<td>74.7</td>
<td>26.4</td>
<td>449</td>
<td>0.0</td>
</tr>
</tbody>
</table>

ppm – parts per million
* - spore-trap sample

Non-viable Airborne Fungi Sampling
Measured total indoor airborne fungi concentrations were determined have a normal ecology and with indoor airborne fungi concentrations lower than measured total outdoor fungi concentrations at this time. A complete laboratory analysis report is available for viewing in Attachment A.

Visual Assessment
A walk-through of the hallways and a limited number of classrooms and public areas was carried out. No bathrooms, staff offices, mechanical rooms, kitchen areas or storage areas were visited. The school was in session at the time of the inspection.

The school was free of evidence of current water intrusion or any unexpected odors. Except as noted, floors, walls and ceiling tiles observed were in acceptable condition. The housekeeping was acceptable.
The following areas for further investigation or improvement were noted:

- Classroom 1 – three stained (approximately 1 foot diameter each) ceiling tiles by exterior wall. One missing ceiling tile.
- Room 10 – the room has approximately 20 1-foot square tiles that are discolored.
- Room 22 – the laminate/pressboard countertop surrounding the classroom sink is water damaged.
- Library – water damaged bookcases by window (there are no books on these shelves). Rust on lower part of the heating units.

Conclusions & Recommendations

Indoor air quality spore trap measurements collected in all areas assessed were less than the levels measured outside the building and with the same predominate spore types found. This is an indication that the spores sampled in the rooms assessed are more likely to be originating in the outdoor environment rather than an interior source - reducing the chance of undetected overgrowth or colonization in the building. While there are no standards for airborne levels of mold, this approach of comparing indoor to outdoor, and looking at the species found, is one tool identified by organizations such as the American Industrial Hygiene Association when identifying assessment methods and improvement measurement in indoor air quality. Please note the following considerations for improvement:

- Identify the cause of any staining on ceiling tiles and fix.
- Investigate why the Library has water damaged shelving. If the reason is other than administrative (i.e. close windows when it is raining) repair the cause and replace shelving if it cannot be cleaned. Investigate the reason for the corrosion on the heaters and repair.
- Repair the countertop in Room 22.
- Clean or paint HVAC grilles that are dirty or have become corroded.

At this time, no other recommendations are provided.

Windjammer appreciates the opportunity to provide this indoor air quality assessment. If you have any questions or comments, please feel free to contact us at (888) 270 - 8387.

Best regards,

Damien Hammond Sr, MS, CSP, CIH
President

Katherine (Kay) Dietrich, CIH, CSP
Certified Industrial Hygienist

Attachment A: Microbial Laboratory Report (Air)
Attachment A
CERTIFICATE OF ANALYSIS

ASTM D7391-09 Spore Trap Analysis Report

Chain of Custody: 614755
Client: Windjammer Environmental
Address: 6710 Oxon Hill Road Suite 210 National Harbor, MD 20745
Attention: Kay Dietrich

Job Name: PGCPS IAQ
Job Location: Fort Foote Elementary School
Job Number: Not Provided
P.O. Number: Not Provided
Date Submitted: 05/15/2019
Person Submitting: Kay Dietrich
Date Analyzed: 05/22/2019
Report Date: 05/22/2019

AMA Sample #
Client ID
Analyst ID
Collection Apparatus
Sample Volume (L)
Sample Condition
Debris Loading
Location

<table>
<thead>
<tr>
<th>AMA Sample #</th>
<th>Client ID</th>
<th>Analyst ID</th>
<th>Collection Apparatus</th>
<th>Sample Volume (L)</th>
<th>Sample Condition</th>
<th>Debris Loading</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>614755-1</td>
<td>190515-1</td>
<td>TLW</td>
<td>Air-O-Cell</td>
<td>75</td>
<td>Acceptable</td>
<td>2</td>
<td>Room 1</td>
</tr>
<tr>
<td>614755-2</td>
<td>190515-2</td>
<td>TLW</td>
<td>Air-O-Cell</td>
<td>75</td>
<td>Acceptable</td>
<td>2</td>
<td>Room 10</td>
</tr>
<tr>
<td>614755-3</td>
<td>190515-3</td>
<td>TLW</td>
<td>Air-O-Cell</td>
<td>75</td>
<td>Acceptable</td>
<td>3</td>
<td>Room 15</td>
</tr>
</tbody>
</table>

Raw Ct
Trav/Flds
A.S. sp/m³
%

<table>
<thead>
<tr>
<th>Alternaria Ascospores</th>
<th>15</th>
<th>52</th>
<th>624</th>
<th>37.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basidiospores</td>
<td>15</td>
<td>52</td>
<td>468</td>
<td>28.1%</td>
</tr>
<tr>
<td>Bipolaris/Drechslera/Helm. Chaetomium</td>
<td>15</td>
<td>52</td>
<td>416</td>
<td>12.5%</td>
</tr>
<tr>
<td>Cladosporium</td>
<td>15</td>
<td>52</td>
<td>208</td>
<td>12.5%</td>
</tr>
<tr>
<td>Curvularia</td>
<td>15</td>
<td>52</td>
<td>364</td>
<td>21.9%</td>
</tr>
<tr>
<td>Penicillium / Aspergillus</td>
<td>15</td>
<td>52</td>
<td>156</td>
<td>6.8%</td>
</tr>
<tr>
<td>Smuts/Periconia/Myxomycetes</td>
<td>15</td>
<td>52</td>
<td>156</td>
<td>6.8%</td>
</tr>
<tr>
<td>Stachybotrys/Memnoniella</td>
<td>15</td>
<td>52</td>
<td>156</td>
<td>6.8%</td>
</tr>
<tr>
<td>Ulocladium</td>
<td>15</td>
<td>52</td>
<td>104</td>
<td>4.5%</td>
</tr>
<tr>
<td>Unknown</td>
<td>15</td>
<td>52</td>
<td>104</td>
<td>4.5%</td>
</tr>
<tr>
<td>Rusts</td>
<td>15</td>
<td>52</td>
<td>104</td>
<td>4.5%</td>
</tr>
<tr>
<td>Epicoccum</td>
<td>15</td>
<td>52</td>
<td>104</td>
<td>4.5%</td>
</tr>
<tr>
<td>Other Colorless</td>
<td>15</td>
<td>52</td>
<td>104</td>
<td>4.5%</td>
</tr>
</tbody>
</table>

Total Raw Ct: 32
Total sp/m³: 1664

Comments

<table>
<thead>
<tr>
<th>Alternaria Ascospores</th>
<th>15</th>
<th>52</th>
<th>2912</th>
<th>87.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basidiospores</td>
<td>15</td>
<td>52</td>
<td>416</td>
<td>12.5%</td>
</tr>
<tr>
<td>Bipolaris/Drechslera/Helm. Chaetomium</td>
<td>15</td>
<td>52</td>
<td>260</td>
<td>11.4%</td>
</tr>
<tr>
<td>Cladosporium</td>
<td>15</td>
<td>52</td>
<td>208</td>
<td>12.5%</td>
</tr>
<tr>
<td>Curvularia</td>
<td>15</td>
<td>52</td>
<td>364</td>
<td>21.9%</td>
</tr>
<tr>
<td>Penicillium / Aspergillus</td>
<td>15</td>
<td>52</td>
<td>156</td>
<td>6.8%</td>
</tr>
<tr>
<td>Smuts/Periconia/Myxomycetes</td>
<td>15</td>
<td>52</td>
<td>156</td>
<td>6.8%</td>
</tr>
<tr>
<td>Stachybotrys/Memnoniella</td>
<td>15</td>
<td>52</td>
<td>156</td>
<td>6.8%</td>
</tr>
<tr>
<td>Ulocladium</td>
<td>15</td>
<td>52</td>
<td>104</td>
<td>4.5%</td>
</tr>
<tr>
<td>Unknown</td>
<td>15</td>
<td>52</td>
<td>104</td>
<td>4.5%</td>
</tr>
<tr>
<td>Rusts</td>
<td>15</td>
<td>52</td>
<td>104</td>
<td>4.5%</td>
</tr>
<tr>
<td>Epicoccum</td>
<td>15</td>
<td>52</td>
<td>104</td>
<td>4.5%</td>
</tr>
<tr>
<td>Other Colorless</td>
<td>15</td>
<td>52</td>
<td>104</td>
<td>4.5%</td>
</tr>
</tbody>
</table>

Total Raw Ct: 64
Total sp/m³: 3328

Comments

<table>
<thead>
<tr>
<th>Alternaria Ascospores</th>
<th>15</th>
<th>52</th>
<th>1040</th>
<th>45.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basidiospores</td>
<td>15</td>
<td>52</td>
<td>780</td>
<td>34.1%</td>
</tr>
<tr>
<td>Bipolaris/Drechslera/Helm. Chaetomium</td>
<td>15</td>
<td>52</td>
<td>260</td>
<td>11.4%</td>
</tr>
<tr>
<td>Cladosporium</td>
<td>15</td>
<td>52</td>
<td>208</td>
<td>12.5%</td>
</tr>
<tr>
<td>Curvularia</td>
<td>15</td>
<td>52</td>
<td>364</td>
<td>21.9%</td>
</tr>
<tr>
<td>Penicillium / Aspergillus</td>
<td>15</td>
<td>52</td>
<td>156</td>
<td>6.8%</td>
</tr>
<tr>
<td>Smuts/Periconia/Myxomycetes</td>
<td>15</td>
<td>52</td>
<td>156</td>
<td>6.8%</td>
</tr>
<tr>
<td>Stachybotrys/Memnoniella</td>
<td>15</td>
<td>52</td>
<td>156</td>
<td>6.8%</td>
</tr>
<tr>
<td>Ulocladium</td>
<td>15</td>
<td>52</td>
<td>104</td>
<td>4.5%</td>
</tr>
<tr>
<td>Unknown</td>
<td>15</td>
<td>52</td>
<td>104</td>
<td>4.5%</td>
</tr>
<tr>
<td>Rusts</td>
<td>15</td>
<td>52</td>
<td>104</td>
<td>4.5%</td>
</tr>
<tr>
<td>Epicoccum</td>
<td>15</td>
<td>52</td>
<td>104</td>
<td>4.5%</td>
</tr>
<tr>
<td>Other Colorless</td>
<td>15</td>
<td>52</td>
<td>104</td>
<td>4.5%</td>
</tr>
</tbody>
</table>

Total Raw Ct: 44
Total sp/m³: 2288

Comments
CERTIFICATE OF ANALYSIS
ASTM D7391-09 Spore Trap Analysis Report

Chain of Custody:
614755

Client:
Windjammer Environmental

Address:
6710 Oxon Hill Road
Suite 210
National Harbor, MD 20745

Attention:
Kay Dietrich

Job Name:
PGCPS IAQ

Job Location:
Fort Foote Elementary School

P.O. Number:
Not Provided

Date Submitted:
05/15/2019

Person Submitting:
Kay Dietrich

Date Analyzed:
05/22/2019

Report Date:
05/22/2019

AMA Sample #
614755-4

Client ID
190515-4

Analyst ID
TLW

Collection Apparatus
Air-O-Cell

Sample Volume (L)
75

Sample Condition
Acceptable

Debris Loading
3

Location
Room 22

<table>
<thead>
<tr>
<th>Raw Ct</th>
<th>Trav/Flds</th>
<th>A.S.</th>
<th>sp/m³</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>15</td>
<td>52</td>
<td>104</td>
<td>2.6%</td>
</tr>
<tr>
<td>32</td>
<td>15</td>
<td>52</td>
<td>1664</td>
<td>41%</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td>52</td>
<td>416</td>
<td>10.3%</td>
</tr>
</tbody>
</table>

Alternaria

Ascospores

Basidiospores

Bipolaris/Drechslera/Helm.

Chaetomium

Cladosporium

Curvularia

Penicillium / Aspergillus

Smuts/Periconia/Myxomycetes

Stachybotrys/Memnoniella

Ulocladium

Unknown

Rusts

Epicoccum

Other Colorless

Hyphal Fragments

Total Raw Ct:
78

Total sp/m³:
4056

AMA Sample #
614755-5

Client ID
190515-5

Analyst ID
TLW

Collection Apparatus
Air-O-Cell

Sample Volume (L)
75

Sample Condition
Acceptable

Debris Loading
2

Location
Library

<table>
<thead>
<tr>
<th>Raw Ct</th>
<th>Trav/Flds</th>
<th>A.S.</th>
<th>sp/m³</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>15</td>
<td>52</td>
<td>260</td>
<td>10.2%</td>
</tr>
<tr>
<td>24</td>
<td>15</td>
<td>52</td>
<td>1248</td>
<td>49%</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>52</td>
<td>312</td>
<td>12.2%</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>52</td>
<td>728</td>
<td>28.6%</td>
</tr>
<tr>
<td>13</td>
<td>15</td>
<td>52</td>
<td>676</td>
<td>14.3%</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>52</td>
<td>208</td>
<td>4.4%</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>52</td>
<td>104</td>
<td>2.2%</td>
</tr>
</tbody>
</table>

Alternaria

Ascospores

Basidiospores

Bipolaris/Drechslera/Helm.

Chaetomium

Cladosporium

Curvularia

Penicillium / Aspergillus

Smuts/Periconia/Myxomycetes

Stachybotrys/Memnoniella

Ulocladium

Unknown

Rusts

Epicoccum

Other Colorless

Hyphal Fragments

Total Raw Ct:
49

Total sp/m³:
2548

AMA Sample #
614755-6

Client ID
190515-6

Analyst ID
TLW

Collection Apparatus
Air-O-Cell

Sample Volume (L)
75

Sample Condition
Acceptable

Debris Loading
2

Location
Outside

<table>
<thead>
<tr>
<th>Raw Ct</th>
<th>Trav/Flds</th>
<th>A.S.</th>
<th>sp/m³</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>15</td>
<td>52</td>
<td>2080</td>
<td>44%</td>
</tr>
<tr>
<td>32</td>
<td>15</td>
<td>52</td>
<td>1664</td>
<td>35.2%</td>
</tr>
<tr>
<td>13</td>
<td>15</td>
<td>52</td>
<td>676</td>
<td>14.3%</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>52</td>
<td>208</td>
<td>4.4%</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>52</td>
<td>104</td>
<td>2.2%</td>
</tr>
</tbody>
</table>

Alternaria

Ascospores

Basidiospores

Bipolaris/Drechslera/Helm.

Chaetomium

Cladosporium

Curvularia

Penicillium / Aspergillus

Smuts/Periconia/Myxomycetes

Stachybotrys/Memnoniella

Ulocladium

Unknown

Rusts

Epicoccum

Other Colorless

Hyphal Fragments

Total Raw Ct:
91

Total sp/m³:
4732

Comments

Raw Ct

Trav/Flds

A.S.

sp/m³

%

Alternaria	2
Ascospores	32
Basidiospores	8

Alternaria	5
Ascospores	24
Basidiospores	24

Alternaria	40
Ascospores	32
Basidiospores	40

Raw Ct

Trav/Flds

A.S.

sp/m³

%

Alternaria	4
Ascospores	24
Basidiospores	24

Alternaria	91
Ascospores	91
Basidiospores	91

Total Raw Ct:

Total sp/m³:

4056

2548

4732
CERTIFICATE OF ANALYSIS
ASTM D7391-09 Spore Trap Analysis Report

Chain of Custody: 614755
Client: Windjammer Environmental
Address: 6710 Oxon Hill Road
Suite 210
National Harbor, MD 20745
Attention: Kay Dietrich

Job Name: PGCPS IAQ
Job Location: Fort Foote Elementary School
Job Number: Not Provided
P.O. Number: Not Provided
Date Submitted: 05/15/2019
Person Submitting: Kay Dietrich
Date Analyzed: 05/22/2019
Report Date: 05/22/2019

General Comments, Disclaimers, and Footnotes

Analytical Method: Sample are analyzed following the instructions and guidelines outlined in ASTM 7391-09.

Sample Condition: Acceptable: The sample was collected and delivered to the our location without disturbing the material on the sampling media.
0 = No particulate matter detected; 1= >nd-~5% Particulate Loading; 2 = ~5%-25% Particulate Loading; 3 = ~25%-75% Particulate Loading; 4 = ~75%-90% Particulate Loading; 5 = >90% Particulate Loading

Spore Notes: Based on their small size and very few distinguishing characteristics, Aspergillus and Penicillium cannot be differentiated by non-viable sampling methods. There are other types of spores whose morphology is similar to Aspergillus and Penicillium and cannot be differentiated by non-viable sampling methods. Examples of these similar spores are Acremonium, Paecilomyces, Wallemia, Trichoderma, Scopulariopsis, and Gliocladium.

Smuts, Periconia and Myxomycetes are three different types of genera that have similar morphological characteristics.

Bipolaris/Dreschlera/Helm: Bipolaris / Dreschlera / Helminthosporium are three different types of genera that have similar morphological characteristics.

Other Colorless represents all colorless spores that are non-distinctive and unidentifiable.

Results for hyphal fragments are in fragments/m3 and are not incorporated in the total spore concentration.

The droplet symbol (💧) refers to water-intrusion indicator spores. These fungal spores, when found on indoor air samples, can be an indication of moisture sources and resultant fungal growth that may be problematic.

Quantification: Analytical Sensitivity (A.S.): This is dependent on the volume of air collected, size of the trace, ocular diameter, and the amount of the trace that was analyzed.
The value of "Present" indicated in the Raw Count column represents the presence of this spore type during the preliminary exam at 400x. The Raw Count converts to a whole number if the spore type is encountered again during the 600x-1,000x enumeration. The sp/m3 concentration will be reported as less than the analytical sensitivity if "Present" is reported in the Raw Count.

Uncertainty: for raw count in the range of 0-50 the SR is 0.375, 51-100 SR=0.333, 101-200 SR=0.257, >200 SR=0.245

All results are to be considered preliminary and subject to change unless signed by the Technical Director or Deputy.

Analyst(s): Tristan Ward

Technical Director Tristan Ward

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these Laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from us. Sample types, locations, and collection protocols are based upon the information provided by the persons submitting them and, unless collected by personnel of these Laboratories, we expressly disclaim any knowledge and liability for the accuracy and completeness of this information. Residual sample material will be discarded in accordance with the appropriate regulatory guidelines, unless otherwise requested by the client.
MOLD SPORE DESCRIPTIONS

Alternaria
Alternaria is ubiquitous in the environment and are normal agents of decay and decomposition. The spores are airborne and common outdoors than indoors isolated from plants, soil, and food. Indoors, the spores are found in house dust, carpets, textiles, wallboard and window frames. The production of melanin-like pigment is one of its major identifying characteristics. The club-shaped spores (conidia) are single or in long chains. They can grow thick colonies with grayish-white surfaces at the beginning which later darken to greenish black or olive brown colors. Health Effects: Allergies are common, but serious infections are rare, except in people with compromised immune systems. Certain species of this genus are often prolific producers of a variety of toxic compounds whose effects on human health are not well known.

Ascospores
Ascospores are spores formed inside an ascus (asci-plural) or sac-like cell which is contained inside a fruiting body called an asccarp or an ascoma (ascomata-plural). An ascus typically contains a definite number of ascospores, usually eight. Ascospores are unique in shape, size, and color as to the Genus/species they represent. These spores are specific to fungi classified as Ascomycetes. They are ubiquitous in nature. Many decay organic matter, others are plant or animal pathogens. They can grow indoors on damp materials. Release of ascospores are released by forcible ejection and dispersed by wind, water, animals and other agents. Health Effects: Depending on the Genera, Ascospores may be allergenic.

Basidiospores
Basidiospores are reproductive spores produced by a group of fungi called basidiomycetes. This group includes the mushrooms, shelf fungi and various other macrofungi. Basidipspores serve as the main air (wind) dispersal units for the fungi and their release is dependent upon moisture. The structure of the spore complex can develop in various manners resulting in different appearances. It is often found growing in soil, decaying plant debris, compost piles and fruit rot. Indoors, it can be found on water damaged building materials (chipboard /OSB, plywood, wallpaper, and glue) as well as on food items (dried foods, cheeses, fruits, herbs, spices, cereals). Health effects: Some basidiospores may produce toxins and can act as allergens. They have not been reported to be pathogens.

Cladosporium
Cladosporium is the most common indoor and outdoor mold. The spores are wind dispersed and are often extremely abundant in outdoor air. Many species are commonly found on living and dead plant material. Indoors, they may grow on surfaces with high moisture or high humidity levels such as damp window sills, poorly ventilated bathrooms and soiled refrigerators. It produces powdery or velvety olive-green to brown or black colonies. The conidia (spores) vary depending on the species and are formed in simple or branching chains with multi-attachment points. Health Effects: Cladosporium species are rarely pathogenic to humans, but have been reported to occasionnally cause sinusitis and pulmonary infections as well as infections of the skin and toenails. The airborne spores are significant allergens, and in large amounts they may severely affect asthmatics and people with respiratory diseases.

Epicoccum
Epicoccum is a cosmopolitan fungus that is often found growing outside in soil, plant litter, decaying plants, and damaged plant tissue. Indoors, it can be found growing on a variety of building materials including paper and textiles. Colonies have a rapid growth rate with cottony texture, initially yellow or orange becoming brown to black in color. Conidiophores or frueling bodies produce dense masses where conidia (spores) arise. Spores are round to pear-shaped, smooth to warty, brown to black in color and muriform (partitioned in both directions, like a soccer ball). Health Effects: This mold can act as a potential allergen. Some people may experience hay fever and or asthma. This mold has not been linked to any human or animal infection.

Hyphal Fragments
Hyphal Fragments are segments or pieces of hyphae or mycelium that may have broken off during sampling (air, tape, dust). The mycelium is the entire mass of hyphae that makes up the vegetative body of a fungus. The presence of hyphal fragments may indicate the presence of viable mold.
Other Colorless

- “Other Colorless” are all non-distinctive, unidentifiable, colorless spores seen on spore trap samples and include all the genera that do not have distinguishing morphology to belong to any of the other defined categories.

Penicillium/Aspergillus Like

Penicillium and Aspergillus are ubiquitous, filamentous fungi that are found in soil, decaying plant debris, compost piles, and in the air. Indoors, spores are commonly found in house dust, in water-damaged buildings (wallpaper, wallpaper glue, decaying fabrics, moist chipboards, and behind paint) as well as fruit and grains. They are the most common fungal genera, worldwide. Both produce chains of spores that are small, round to oval, colorless or slightly pigmented, and smooth to rough walled. These spores are indistinguishable between the two as well as other genera, such as Gliocladium, Trichoderma, Paeclomyces, and Scopulariopsis. They differ as to their conidiophores or fruiting bodies. While, Aspergillus spores are produced from phialides supported on conidia heads or swollen vesicles, Penicillium spores are produced on finger-like projections. Depending on species, typical colonies of Aspergillus are initially white and later turn to either shades of green, yellow, orange, brown or black. Texture is usually velvety to cottony. Typical colonies of Penicillium, other than Penicillium marneffei (yeast-like at 37oC), grow rapidly, white in color at first, later becoming bluish green with white borders with velvety to powdery textures depending on species. Some species produce radial patterns. Health Effects: Both Aspergillus and Penicillium are potential allergens. Several species of Aspergillus (A. flavus and A. parasiticus) produce aflatoxins or natturally occurring mycotoxins that are toxic and carcinogenic. These are found in contaminated foodstuff and are hazardous to consumers. Penicillium has only one known species that is pathogenic to humans (P. marneffei) that causes lethal systemic infection (Penicilliosis) in immunocompromised individuals.

Rusts

Rusts are of the order Uredinales. Certain species produce spores that are often reddish in color and resemble the corrosion process known as rust. This is how this group derived its common name-Rusts. The spores are airborne and can travel long distances. Some spores slightly resemble Smuts. Rusts are plant parasites and may require two or more different plant hosts to complete their life cycle. Their complex life cycle includes production of five different spore stages. Their infection rate is enhanced by wet weather. Health Effects: Rusts can cause allergen type I allergies (hay fever, asthma). No human infection and known toxins have been reported.

Smuts/Periconia/Myxomycetes

Smuts, Periconia, and Myxomycetes spores are grouped together due to their similar round, brown morphology. Smuts are outdoor parasitic plant pathogens. They rarely grow indoors but may grow on host plants if appropriate conditions are present. They are parasitic plant pathogens. They can be found on cereal crops, grasses, flowing plants, weed, and other fungi. They can cause allergies. Periconia are found in soils, dead herbaceous stems and leaf spots, and grasses. They have wind dispersed dry spores. Their spores are abundant in the air but it is not known if they are allergenic. Myxomycetes are found on decaying logs, stumps and dead leaves. They have wind-dispersed dry spores and wet motile (amoebic phase) spores. During favorable conditions they move about like amoebae. They form dry airborne spores when conditions are unfavorable. They are rarely found indoors. Health Effects: They may cause Type 1 allergies (hay fever, asthma). No human infections have been reported.

Unknown Fungi

“Unknown Fungi” are spores that cannot be identified under direct microscopic analysis. This includes partial spores. This category also includes spores that are hidden or hard to see during microscopic examination due to heavy presence of particulate.
Chain of Custody

Mailing/Billing Information:
1. Client Name: Windjammer Enviro
2. Address 1: 6710 Oak Hill Rd Suite 210 National Harbor, MD 20745
3. Address 2:
4. Address 3:
5. Phone #: 301-351-4213 Fax #:

Reporting Information (Results will be provided as soon as technically feasible):
- Immediate
- 24 Hours
- 3 Day

Normal Business Hours:
- 3 Day
- Results Required By Noon
 - Every Attempt Will Be Made to Accommodate
- Date Due: 5/22/19

Report To:
- Include COC/Field Data Sheets with Report
- Email: DREITCH@WDBENViro.com
- Fax:
- Verbal:

Asbestos Analysis
- PCM Air: Please Indicate Filter Type:
 - NIOSH 7400 (QTY)
 - Fiberglass (QTY)
- TEM Air: Please Indicate Filter Type:
 - AHRA (QTY)
 - NIOSH 7402 (QTY)
 - Other (specify) (QTY)
- PLM Bulk:
 - EPA 600 - Visual Estimate (QTY)
 - EPA Point Count (QTY)
 - NY State Friable 198.6 (QTY)
 - Other (specify) (QTY)

Metals Analysis
- Pb Paint Chip (QTY)
- Pb Dust Wipe (QTY)
- Pb Soil/Sediment (QTY)
- Pb TCLP (QTY)
- Drinking Water Pb (QTY)
- Waste Water Pb (QTY)
- Pb Furnace (QTY)

Fungal Analysis
- Collection Media:
 - Spore Trap (QTY)
 - Surface Vacuum Dust (QTY)
 - Culturable ID Genus (QTY)
 - Surface Swab (QTY)
 - Culturable ID Species (QTY)

Client Contact
- Laboratory Staff Only:
 - Client ID Number:
 - Sample Location/Identification:
 - Date:
 - Volume (Liters):
 - Analyzed:
 - Matrix:
 - Client Contact:

- Date/Time: By:
- Date/Time: By:
- Date/Time: By:

All samples received in good condition unless otherwise noted.

(TEM Water samples _______C)