

June 5, 2019

Prince George's County Public Schools 13300 Old Marlboro Pike Upper Marlboro, Maryland 20772 Attention: Mr. Alex Baylor

RE: Indoor Air Quality Screening, Gwynn Park High School IFB: 022-19 ATI Project Number: ATI19-678

Dear Mr. Baylor:

Prince George's County Public Schools requested that ATI, Inc., conduct a proactive indoor air quality (IAQ) screening at Gwynn Park High School. The IAQ screening was conducted on May 25, 2019. Its key findings are enclosed in the Executive Summary on page three, and the official laboratory report for total fungal spore trap sampling is enclosed in Appendix A.

Thank you for the opportunity to provide Industrial Hygiene services for Prince George's County Public Schools. If you have any questions regarding this report, please contact us at (202) 643-4283.

Sincerely, **ATI, INC.**

buttuly Ancall.

Courtney E. McCall Project Manager

Sarath Seneviratne CIH, CSP, CHMM

Indoor Air Quality Screening Report

Prince George's County Public Schools Gwynn Park High School 13800 Brandywine Road Brandywine, Maryland 20613

Prepared for:

Prince George's County Public Schools 13300 Old Marlboro Pike Upper Marlboro, Maryland 20772

June 5, 2019

Submitted by:

ATI Job # 19-678

Intentionally Blank

Table of Contents

1. Executive Summary and Key Findings	,				
2. Assessment Methods	j				
3. Visual Observations	,				
4. Thermal Environmental Conditions for Human Occupancy5)				
4.1 Temperature5	1				
4.2 Relative Humidity	1				
4.3 Carbon Dioxide	1				
4.4 Carbon Monoxide7					
5. Total Fungal Air Sampling Results	1				
6. Summary of Findings	ļ				
Table 1: Visual Observations and Sampling Locations4					
Table 2: Temperature Measurements	,				
Fable 3: Relative Humidity Measurements 6					
Table 4: Carbon Dioxide Measurements7					
Table 5: Carbon Monoxide Measurements 7					

Appendix A: Laboratory Report and Chain of Custody Appendix B: Instrument Calibration Records

Abbreviations and Acronyms

AHU	Air-Handling Unit
AIHA	American Industrial Hygiene Association
ASHRAE	American Society of Heating, Refrigerating and Air-Conditioning Engineers
ASTM	American Society for Testing and Materials
CO	Carbon Monoxide
CO ₂	Carbon Dioxide
EMLAP	Environmental Microbiology Laboratory Accreditation Program
HVAC	Heating, Ventilating, And Air-Conditioning
IAQ	Indoor Air Quality
NIST	National Institute for Standards and Technology
NVLAP	National Voluntary Laboratory Accreditation Program
RH	Relative Humidity

Abbreviations involving scientific volume and measurements involving media or water sampling

Counts/m ³	Mold spores per cubic meter of air
LPM	Liters Per Minute
NTE	Not to exceed
°F	degree Fahrenheit
PPM	Parts Per Million

1. Executive Summary and Key Findings

ATI conducted a proactive Indoor Air Quality (IAQ) screening on May 25, 2019, at Gwynn Park High School, located at 13800 Brandywine Road, Brandywine, MD 20613.

The screening included a visual assessment of randomly selected classrooms and other frequently occupied spaces, such as the cafeteria, the library, and classrooms, for potential IAQ contributors and pathways. As part of the screening, ATI collected direct reading measurements for comfort parameters, including temperature, relative humidity, carbon dioxide, and carbon monoxide. Also, ATI collected total fungal air samples on spore trap cassettes for microbiological analysis.

The following is a summary of the key findings from this screening:

- 1. Temperature measurements were cooler than the ASHRAE guidelines for summer temperatures, between 73°F and 79°F.
- 2. Relative humidity measurements were within ASHRAE guidelines, <65%.
- 3. All tested areas were within the recommended ASHRAE limit for carbon dioxide, which was 1,062.5 parts per million (PPM).
- 4. Carbon monoxide was not detected throughout the tested spaces.
- Total spore counts in each tested location did not exceed those detected outdoors, 7,550 counts/m³. Low spore counts were detected in most spaces. One classroom had elevated levels of Aspergillus/Penicillium, and this classroom had a potted plant and no visible signs of microbial growth in the room.

2. Assessment Methods

Ms. Courtney McCall of ATI, Inc., conducted a visual assessment and air sampling on May 25, 2019. Sampled rooms were randomly selected and accounted for approximately 10% of classrooms or a minimum of five samples. Visual observations were made at the time the samples were collected. ATI references the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) *Standard* 62.1 – 2016 and ASHRAE *Standard* 55 – 2017 when providing IAQ services to clients. ASHRAE is an industry leader on energy efficiency and indoor air quality.

All measurements and air samples were collected between three-six feet from floor elevation, which represents the breathing zone, and away from air-supply and return diffusers. Real-time direct readings for temperature, relative humidity, carbon dioxide (CO₂), and carbon monoxide (CO), were obtained with a calibrated TSI Q-Trak 7575-X Meter and attached 982 Probe.

Total fungal air samples were collected with a Buck BioAire High-Volume Sampling Pump on Zefon Air-O-Cell spore-trap cassettes at a flow rate of 15 liters per minute for five minutes, for a sample volume of 75 liters. The samples were analyzed by direct microscopic examination (identifies and counts both viable and non-viable spores, which is then considered "total fungal"), via the American Society for Testing and Materials (ASTM) Standard D7391-09 by EMSL Analytical, Inc., (EMSL) located in Beltsville, MD.

EMSL participates in the National Institute of Standards and Technology's (NIST's) National Voluntary Laboratory Accreditation Program (NVLAP) for general laboratory performance and management and the American Industrial Hygiene Association (AIHA) Environmental Microbial Laboratory Accreditation Program (EMLAP, Certificate Number 102891).

Instrument calibration records are included in Appendix B of this report.

3. Visual Observations

Sample Location	Observations
Outside	Clear skiesLight breeze and grasses nearby. No standing water present.
Library, Second Floor	 No occupants were present during sampling. Housekeeping is good and no visible dust is present in sampling area. No microbial growth observed. Space is approximately 3,500 ft.²
Room 238 Chemistry Lab	 No occupants are in classroom during sampling. One small plant 10 feet from sampling pump. Lab tables do not have dust or stacks of papers. No microbial growth observed. Faint smell of cleaning products present and room appears to be freshly cleaned. Space is approximately 720 ft.²
Room 218	 No occupants are in classroom during sampling. Housekeeping is good and no visible dust is present. No microbial growth observed. Space is approximately 480 ft.²
Room 126 Home Management	 No occupants are in classroom during sampling. Room appears to have newer finishings, such as baseboard and ceiling tiles. Very clean space and no microbial growth observed. Room feels pretty cool and air supply can be felt. Space is approximately 540 ft.²
Room 115 Art Room	 No occupants are in classroom during sampling. Large instruction room with paper and art supplies stored and artwork on display. These materials are scattered in the room. Visible dusts not present and no microbial growth observed. Space is approximately 1,300 ft.²
Room 155	 No occupants are in classroom during sampling. Room feels warmer and is located on a wing away from the main school section. Air conditioning is turning off and on. A potted plant is at the teacher's desk. Books and papers are scattered on the back shelf. Dusts not visible. No microbial growth observed. Space is approximately 650 ft.²

Table 1: Visual Observations and Sampling Locations

Sample Location	Observations
Cafeteria	 Two occupants in the room during sampling. Custodian said that the cafeteria had a big cleaning about a week prior, with scrubbing all tables (underneath), walls and floors. No visible dusts or debris present. No microbial growth observed. Space is approximately 4,500 ft.²

4. Thermal Environmental Conditions for Human Occupancy

ASHRAE Standard 55-2017, Thermal Environmental Conditions for Human Occupancy, addresses thermal comfort in an office environment, which means that an employee wearing a normal amount of clothing feels neither too cold nor too warm. This standard discusses thermal comfort within the context of air temperature, humidity, and air movement and provides recommended ranges for temperature and humidity that are intended to satisfy most building occupants. The recommended ASHRAE ranges are referenced below by each comfort parameter.

4.1 <u>Temperature</u>

The ASHRAE standard establishes a winter comfort range of between $68^{\circ}F$ and $75^{\circ}F$ and a summer range of between $73^{\circ}F$ and $79^{\circ}F$. The temperature measurements obtained during the May 25, 2019 screening is summarized in Table 2. As indicated by the data in the table, temperatures in the school averaged between $67.2 - 72.6^{\circ}F$, below the ASHRAE summer comfort range.

Sample Location		May 25, 2019 ∘F	ASHRAE	
	Min	Мах	Average	۰F
Outside	68	70	69	N/A
	I	ndoors		
Library, Second Floor	72	73.3	72.6	73 – 79
Room 238 Chemistry Lab	69.7	71	70.4	73 – 79
Room 218	67.3	68	67.7	73 – 79
Room 126 Home Management	66.8	67.5	67.2	73 – 79
Room 115 Art Room	67.6	68	67.8	73 – 79
Room 155	69.7	71.6	70.7	73 – 79
Cafeteria	72	72	72	73 – 79

Table 2: Temperature Measurements

4.2 <u>Relative Humidity</u>

Relative humidity is a key factor for mold growth. Mold has the potential of growing on suitable surfaces with humidity levels above 65%. ASHRAE *Standard 62.1-2016*, *Ventilation for Acceptable Indoor Air Quality,* recommends a maximum indoor relative humidity of 65% to prevent condensation of moisture on surfaces. Relative humidity below 30% may result in drying of the mucous membranes and skin. Relative humidity measurements are summarized in Table 3. As indicated by the data in the table, relative humidity measurements averaged between 48.5% and 59.8%, within the ASHRAE maximum recommendation of 65% relative humidity.

Sample Location		May 25, 2019 (%)	ASHRAE Standard	
	Min	Мах	Average	(% RH)
Outside	56	59	58	N/A
		Inside		
Library, Second Floor	48	49	48.5	< 65
Room 238 Chemistry Lab	50	51.7	50.9	< 65
Room 218	54	55.5	54.8	< 65
Room 126 Home Management	57.6	59.1	58.4	< 65
Room 115 Art Room	57.5	58.7	58.1	< 65
Room 155	58.3	61.3	59.8	< 65
Cafeteria	56.9	57.7	57.3	< 65

Table 3: Relative Humidity Measurements

4.3 Carbon Dioxide

Carbon dioxide measurements within an occupied building are a standard method used to gauge the efficiency of ventilation systems. Carbon dioxide is a by-product of human respiration and does not pose an acute health hazard alone. Elevated concentrations may suggest that insufficient fresh air is being supplied to an occupied space and/or that the ventilation system does not provide a sufficient rate of air exchange.

Research has indicated that buildings with adequately operating ventilation systems are able to remove odors generated by activities in an indoor office environment efficiently. ASHRAE *Standard 62.1-2016* states that comfort (odor) criteria with respect to human bioeffluents are likely to be satisfied if the ventilation results indoor carbon dioxide concentrations are less than 700 parts per million (ppm) above the outdoor air concentration.

Carbon dioxide measurements are summarized in Table 4. On the day of the screening, the average outdoor carbon dioxide concentration obtained was 362.5 ppm, which calculates to a maximum indoor concentration of 1,062.5 ppm (700 + 362.5). The carbon dioxide levels inside the suite ranged from the minimum average

detected, 366.5 ppm to 434 ppm, the maximum average detected, less than the ASHRAE recommended range for the day, 1,062.5 ppm.

Sample Location	Concen	May 25, 2019 tration (parts per	ASHRAE Standard	
	Min	Max	Average	(ppm) NTE
Outside	358	367	362.5	N/A
		Inside		
Library, Second Floor	374	465	419.5	1,062.5
Room 238 Chemistry Lab	390	392	391	1,062.5
Room 218	379	388	383.5	1,062.5
Room 126 Home Management	369	371	370	1,062.5
Room 115 Art Room	361	372	366.5	1,062.5
Room 155	425	443	434	1,062.5
Cafeteria	398	437	417.5	1,062.5

Table 4: Carbon Dioxide Measurements

4.4 Carbon Monoxide

Carbon monoxide is a colorless and odorless gas produced by the incomplete combustion of carbon containing fuels. Oil, gasoline, diesel fuels, wood, coke, and coal are the major sources of carbon monoxide. ASHRAE recommends that carbon monoxide not exceed nine ppm indoors. As indicated by the data in Table 5, carbon monoxide was not detected throughout the suite.

Table 5: Carbon Monoxide Measurements

Sample Location	Concen	May 25, 2019 tration (parts per	ASHRAE				
	Min	Мах	Average	(ppm)			
Outside	0	0	0	N/A			
Inside							
Library, Second Floor	0	0	0	< 9			
Room 238	0	0	0	< 9			
Chemistry Lab							
Room 218	0	0	0	< 9			
Room 126	0	0	0	< 9			
Home Management							
Room 115	0	0	0	< 9			
Art Room							
Room 155	0	0	0	< 9			
Cafeteria	0	0	0	< 9			

ATI Project #: 19-678 June 5, 2019 Page **7** of **9**

5. Total Fungal Air Sampling Results

Mold needs a food source, moisture, proper temperature and humidity, and at times, a source of light, to grow in an environment. Air infiltration through building entrances and exits, open windows and loading docks, and foot traffic into buildings, including the HVAC system all serve as primary pathways that can carry fungi indoors. Water leaks and humid conditions inside of buildings provide the moisture that fosters mold growth.

The May 25, 2019, mold screening sampled air using spore trap cassettes in randomly selected classrooms and other areas throughout the facility. These cassettes collect both viable spores, those capable of producing more fungal colonies, and non-viable spores, which cannot reproduce. Based upon recognized industry practices, indoor mold concentrations are compared with those detected outdoors, which are also known as ambient or baseline samples.

In normal circumstances, the diversity of spores identified indoors and outdoors should be similar with some exceptions. The high concentration of one or two species of fungal spores identified indoors and the absence of the same species outdoors can indicate a moisture problem with the potential to degrade the air quality. Fungi species present indoors are typically found at levels ranging from approximately 10-50% of their levels in the outdoor air, reflecting the filtering by the building's HVAC system.

The official laboratory report with spore trap samples collected on May 25, 2019, is presented in Appendix A. Generally, the findings indicated that the indoor concentrations were favorable compared to the outdoor concentrations with four classrooms detecting only four raw counts of spores. The total spore counts in each tested location did not exceed those detected outdoors, 7,550 counts/m³.

Ascospores, Basidiospores and Cladosporium, mold spores that are commonly detected indoors, were the predominant spore types. Aspergillus/Penicillium, which is known to cause allergies, was detected at 1,000 counts/m³ in Room 155, higher than the outdoor concentration. Room 155 had a potted plant about 12 feet from the mold sampling pump. No microbial growth was observed in this room. Aspergillus/Penicillium can cause allergies and health problems for persons with lung and immune system disorders.

ATI Project #: 19-678 June 5, 2019 Page **8** of **9**

6. Summary of Findings

Temperature measurements were cooler than the ASHRAE guidelines for summer temperatures, between 73°F and 79°F. Relative humidity measurements were within ASHRAE guidelines, <65%. All tested areas were within the recommended ASHRAE limit for carbon dioxide, which was 1,062.5 parts per million (PPM). Carbon monoxide was not detected throughout the tested spaces.

Total spore counts in each tested location did not exceed those detected outdoors, 7,550 counts/m³. Low spore counts were detected in most spaces. One classroom had elevated levels of Aspergillus/Penicillium, and this classroom had a potted plant and no visible signs of microbial growth.

We appreciate the opportunity to provide these IAQ testing services for you. If you have any questions, please contact us at (202) 643-4283.

Sincerely, ATI, INC.

Contruly Chrecaee

Courtney E. McCall Project Manager

Sarath Seneviratne CIH, CSP, CHMM

Appendix A: Laboratory Report and Chain of Custody

EMSL Analytical, Inc.

528 Mineola Avenue Carle Place, NY 11514 Tel/Fax: (516) 997-7251 / (516) 997-7528 http://www.EMSL.com / carleplacelab@emsl.com

Attn: Courtney McCall

Suite 250

4221 Forbes Blvd

Lanham, MD 20706 Project: 19-678 Gwynn Park HS

ATI

EMSL Order:	061910209
Customer ID:	ATII25A
Customer PO:	
Project ID:	

 Phone:
 (202) 832-1433

 Fax:
 5

 Collected:
 05/25/2019

 Received:
 05/28/2019

 Analyzed:
 05/30/2019

Test Report: Air-O-Cell(™) Analysis of Fungal Spores & Particulates by Optical Microscopy (Methods MICRO-SOP-201, ASTM D7391)									
Lab Sample Number: Client Sample ID: Volume (L): Sample Location	061910209-0001 2826 0967 75 Ambient		Ie Number: 061910209-0001 061910209-0002 Sample ID: 2826 0967 2826 0952 /olume (L): 75 75 le Location Ambient Library 2nd Floor		2 r	061910209-0003 2826 0938 75 Classroom 238			
Spore Types	Raw Count	Count/m ³	% of Total	Raw Count	Count/m ³	% of Total	Raw Count	Count/m ³	% of Total
Alternaria (Ulocladium)	-	-	-	-	-	-	-	-	-
Ascospores	39	1700	22.5	-	-	-	4	200	16.4
Aspergillus/Penicillium	5	200	2.6	-	-	-	-	-	-
Basidiospores	116	5060	67	1*	10*	100	21	920	75.4
Bipolaris++	-	-	-	-	-	-	-	-	-
Chaetomium	-	-	-	-	-	-	-	-	-
Cladosporium	13	570	7.5	-	-	-	3	100	8.2
Curvularia	-	-	-	-	-	-	-	-	-
Epicoccum	-	-	-	-	-	-	-	-	-
Fusarium	-	-	-	-	-	-	-	-	-
Ganoderma	1*	10*	0.1	-	-	-	-	-	-
Myxomycetes++	-	-	-	-	-	-	-	-	-
Pithomyces++	-	-	-	-	-	-	-	-	-
Rust	-	-	-	-	-	-	-	-	-
Scopulariopsis/Microascus	-	-	-	-	-	-	-	-	-
Stachybotrys/Memnoniella	-	-	-	-	-	-	-	-	-
Unidentifiable Spores	-	-	-	-	-	-	-	-	-
Zygomycetes	-	-	-	-	-	-	-	-	-
Polythrincium	1*	10*	0.1	-	-	-	-	-	-
Total Fungi	175	7550	100	1	10	100	28	1220	100
Hyphal Fragment	-	-	-	-	-	-	-	-	-
Insect Fragment	-	-	-	-	-	-	-	-	-
Pollen	1	40	-	1	40	-	-	-	-
Analyt. Sensitivity 600x	-	44	-	-	44	-	-	44	-
Analyt. Sensitivity 300x	-	13*	-	-	13*	-	-	13*	-
Skin Fragments (1-4)	-	1	-	-	1	-	-	1	-
Fibrous Particulate (1-4)	-	1	-	-	1	-	-	1	-
Background (1-5)	-	1	-	-	1	-	-	1	-

++ Includes other spores with similar morphology; see EMSL's fungal glossary for each specific category.

Jeffrey Lau, Microbiology Laboratory Manager or other approved signatory

High levels of background particulate can obscure spores and other particulates leading to underestimation. Background levels of 5 indicate an overloading of background particulates, prohibiting accurate detection and quantification. Present = Spores detected on overloaded samples. Results are not blank corrected unless otherwise noted. The detection limit is equal to one fungal spore, structure, pollen, fiber particle or insect fragment. "*" Denotes particles found at 300X. "" Denotes not detected. Due to method stopping rules, raw counts in excess of 100 are extrapolated based on the percentage analyzed. EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. Samples received in good condition unless otherwise noted.

Samples analyzed by EMSL Analytical, Inc. Carle Place, NY AIHA-LAP, LLC--EMLAP Accredited #102344

Initial report from: 06/03/2019 14:31:09

For information on the fungi listed in this report, please visit the Resources section at www.emsl.com

EMSL Analytical, Inc.

528 Mineola Avenue Carle Place, NY 11514 Tel/Fax: (516) 997-7251 / (516) 997-7528 http://www.EMSL.com / carleplacelab@emsl.com

Attn: Courtney McCall

Suite 250

4221 Forbes Blvd

Lanham, MD 20706 Project: 19-678 Gwynn Park HS

ATI

EMSL Order:	061910209
Customer ID:	ATII25A
Customer PO:	
Project ID:	

 Phone:
 (202) 832-1433

 Fax:
 6

 Collected:
 05/25/2019

 Received:
 05/28/2019

 Analyzed:
 05/30/2019

Test Rep	د Particulates by Optical Microscopy (Methods MICRO-SOP-201, ASTM D7391)								
Lab Sample Number: Client Sample ID: Volume (L): Sample Location	061910209-0004 2826 0937 75 Classroom 218			Hor	061910209-0008 2826 0962 75 ne Mgmt Room	126	061910209-0006 2826 0948 75 Art Room, Room 115		
Spore Types	Raw Count	Count/m ³	% of Total	Raw Count	Count/m ³	% of Total	Raw Count	Count/m ³	% of Total
Alternaria (Ulocladium)	-	- -	-	-	-	-	-	-	-
Ascospores	-	-	-	-	-	-	1	40	23.5
Aspergillus/Penicillium	-	-	-	-	-	-	1	40	23.5
Basidiospores	2	90	100	1	40	50	2	90	52.9
Bipolaris++	-	-	-	-	-	-	-	-	-
Chaetomium	-	-	-	-	-	-	-	-	-
Cladosporium	-	-	-	1	40	50	-	-	-
Curvularia	-	-	-	-	-	-	-	-	-
Epicoccum	-	-	-	-	-	-	-	-	-
Fusarium	-	-	-	-	-	-	-	-	-
Ganoderma	-	-	-	-	-	-	-	-	-
Myxomycetes++	-	-	-	-	-	-	-	-	-
Pithomyces++	-	-	-	-	-	-	-	-	-
Rust	-	-	-	-	-	-	-	-	-
Scopulariopsis/Microascus	-	-	-	-	-	-	-	-	-
Stachybotrys/Memnoniella	-	-	-	-	-	-	-	-	-
Unidentifiable Spores	-	-	-	-	-	-	-	-	-
Zygomycetes	-	-	-	-	-	-	-	-	-
Polythrincium	-	-	-	-	-	-	-	-	-
Total Fungi	2	90	100	2	80	100	4	170	100
Hyphal Fragment	-	-	-	-	-	-	-	-	-
Insect Fragment	-	-	-	-	-	-	-	-	-
Pollen	-	-	-	-	-	-	-	-	-
Analyt. Sensitivity 600x	-	44	-	-	44	-	-	44	-
Analyt. Sensitivity 300x	-	13*	-	-	13*	-	-	13*	-
Skin Fragments (1-4)	-	1	-	-	1	-	-	1	-
Fibrous Particulate (1-4)	-	1	-	-	1	-	-	1	-
Background (1-5)	-	1	-	-	1	-	-	1	-

++ Includes other spores with similar morphology; see EMSL's fungal glossary for each specific category.

Jeffrey Lau, Microbiology Laboratory Manager or other approved signatory

High levels of background particulate can obscure spores and other particulates leading to underestimation. Background levels of 5 indicate an overloading of background particulates, prohibiting accurate detection and quantification. Present = Spores detected on overloaded samples. Results are not blank corrected unless otherwise noted. The detection limit is equal to one fungal spore, structure, pollen, fiber particle or insect fragment. "*" Denotes particles found at 300X. "" Denotes not detected. Due to method stopping rules, raw counts in excess of 100 are extrapolated based on the percentage analyzed. EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. Samples received in good condition unless othewise noted.

Samples analyzed by EMSL Analytical, Inc. Carle Place, NY AIHA-LAP, LLC--EMLAP Accredited #102344

Initial report from: 06/03/2019 14:31:09

For information on the fungi listed in this report, please visit the Resources section at www.emsl.com

EMSL Analytical, Inc.

528 Mineola Avenue Carle Place, NY 11514 Tel/Fax: (516) 997-7251 / (516) 997-7528 http://www.EMSL.com / carleplacelab@emsl.com

Attn: Courtney McCall

Suite 250

4221 Forbes Blvd

Lanham, MD 20706 Project: 19-678 Gwynn Park HS

ATI

EMSL Order:	061910209
Customer ID:	ATII25A
Customer PO:	
Project ID:	

 Phone:
 (202) 832-1433

 Fax:
 6

 Collected:
 05/25/2019

 Received:
 05/28/2019

 Analyzed:
 05/30/2019

Test Report: Air-O-Cell(™) Analysis of Fungal Spores & Particulates by Optical Microscopy (Methods MICRO-SOP-201, ASTM D7391)									
Lab Sample Number: Client Sample ID: Volume (L): Sample Location	061910209-0007 28260968 75 Classroom 155				061910209-0008 2826 0936 75 Cafeteria	3	061910209-0009 2826 0944 Field Blank		
Spore Types	Raw Count	Count/m ³	% of Total	Raw Count	Count/m ³	% of Total	Raw Count	Count/m ³	% of Total
Alternaria (Ulocladium)	-	-	-	- '	-	-	-	-	-
Ascospores	1	40	3.2	22	960	30.4	-	-	-
Aspergillus/Penicillium	23	1000	80.6	4	200	6.3	-	-	-
Basidiospores	4	200	16.1	44	1900	60.1	-	-	-
Bipolaris++	-	-	-	-	-	-	-	-	-
Chaetomium	-	-	-	-	-	-	-	-	-
Cladosporium	-	-	-	3	100	3.2	-	-	-
Curvularia	-	-	-	-	-	-	-	-	-
Epicoccum	-	-	-	-	-	-	-	-	-
Fusarium	-	-	-	-	-	-	-	-	-
Ganoderma	-	-	-	-	-	-	-	-	-
Myxomycetes++	-	-	-	-	-	-	-	-	-
Pithomyces++	-	-	-	-	-	-	-	-	-
Rust	-	-	-	-	-	-	-	-	-
Scopulariopsis/Microascus	-	-	-	-	-	-	-	-	-
Stachybotrys/Memnoniella	-	-	-	-	-	-	-	-	-
Unidentifiable Spores	-	-	-	-	-	-	-	-	-
Zygomycetes	-	-	-	-	-	-	-	-	-
Polythrincium	-	-	-	-	-	-	-	-	-
Total Fungi	28	1240	100	73	3160	100	-	No Trace	-
Hyphal Fragment	-	-	-	-	-	-	-	-	-
Insect Fragment	-	-	-	-	-	-	-	-	-
Pollen	-	-	-	-	-	-	-	-	-
Analyt. Sensitivity 600x	-	44	-	-	44	-	-	0	-
Analyt. Sensitivity 300x	-	13*	-	-	13*	-	-	0*	-
Skin Fragments (1-4)	-	1	-	-	1	-	-	-	-
Fibrous Particulate (1-4)	-	1	-	-	1	-	-	-	-
Background (1-5)	-	1	-	-	1	-	-	-	-

++ Includes other spores with similar morphology; see EMSL's fungal glossary for each specific category.

Jeffrey Lau, Microbiology Laboratory Manager or other approved signatory

High levels of background particulate can obscure spores and other particulates leading to underestimation. Background levels of 5 indicate an overloading of background particulates, prohibiting accurate detection and quantification. Present = Spores detected on overloaded samples. Results are not blank corrected unless otherwise noted. The detection limit is equal to one fungal spore, structure, pollen, fiber particle or insect fragment. "*" Denotes particles found at 300X. "" Denotes not detected. Due to method stopping rules, raw counts in excess of 100 are extrapolated based on the percentage analyzed. EMSL maintains liability limited to cost of analysis. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. Samples received in good condition unless otherwise noted.

Samples analyzed by EMSL Analytical, Inc. Carle Place, NY AIHA-LAP, LLC--EMLAP Accredited #102344

Initial report from: 06/03/2019 14:31:09

For information on the fungi listed in this report, please visit the Resources section at www.emsl.com

MIC_M001_0002_0001 1.71 Printed: 06/03/2019 14:31 PM

.

Microbiology Chain of Custody

EMSL Order Number (Lab Use Only):

EMSL ANALYTICAL, INC. 200 ROUTE 130 NORTH CINNAMINSON, NJ 08077 PHONE: (800) 220-3675 FAX:(856) 786-0262

· · · · · · · · · · · · · · · · · · ·			(AL 6	1.10	- D.W.			
Company Name: ATI, Inc.			_	EMSL-Bill to: Same Different if Bill to is Different note instructions in Comments						
Street: 4221 Forbes Blvd Suite 250				Third Party Billing requires written authorization from third party.						
City: Lanham	State/Province: M	D	Zip/Po	stal Code:	20706		Country:			
Report To (Name)	: Courtney McCall		Telept	ione #: 703	<u>399 5423</u>					
Email Address: C	ourtney@atiinc.com		Fax #:				Purchase Or	der:		
Project Name/Nu	mber: 19-678 Gwynn Park HS		Please	Provide R	esults: [Fax	Email			
U.S. State Sample	es Taken: MD Project	Zip Code: 206	613	Conne	cticut Sa	mples: 🗌	Commercial] Residential		
Sterile, Sodium Thiosulfate Preserved Bottle U			ed: 🛄 B	iocide Use	d in Sour	ce (specify	/):			
Public Water Supply Samples: 🗋 Note: All results			y autom	atically be	reported	to DOH if	required by st	ate.		
		ind Time (TAT)	Option:	s - Please C	heck	<u> </u>				
	6 Hour 24 Hour	1 48 Hour		Codee		6 Hour	A 1 AAGEK			
	M174 MoldSpon	MICrobiolog	monas ae	coues nucinosa (P/A	***)	M115 Sew	age Screen - Wa	er (P/A***)		
MOSO Micro 5	M032 Allergenco-D	M024 Pseudo	monas ae	ruginosa (MF	T*)	M116 Sew	age Screen - Wa	ter (MPN**)		
M041 Fungal Direct	Examination	M015 Heterotr M017 Total Co	ophic Plat	ie Count F <i>coli (</i> Colileri	P/A***)	M117 Sew M013 Sew	age Screen - Swi age Screen - Swi	ab (P/A***) ab (MFT*)		
M169 Pollen ID & Er	umeration	M018 Total Co	sliform & E	. coli (MFT*)		M133 Meth	icillin-resistant S	taph. aureus		
M280 Dust Characte	rization Level-1	M114 Total Co (Colient MPN*	bliform & E *∖	E. coli Enumei	ration	i (MRSA) M031 Rapi	d-arowing non-TR	3 Mycobacteria		
M281 Dust Characte M005 Viable Euroi-	rization Level-2 Air Samples (Genus ID & Count)	M019 Fecal C	oliform (M	FT*)		M031 Rapid-growing non-18 Mycobacteria Detection & Enumeration M014 Endotoxin Analysis M044 Croup Allegren (Cat Dog. Cockroach				
M006 Viable Fungi-	Air Samples (Includes Penicillium,	M020 Fecal Si M029 Enteroc	treptococo occi (MET	:us (MFT*) *)						
Aspergillus, Cladosp	orium, Stachybotrys Species ID &	M129 Enteroc	occi (Ente	rolert P/A***)	Dust Mite)					
M007 Culturable fun	gi - Surface Samples (Genus ID &	M180 Real Tin M025 Sewage	ne qPCR- Screen -	ERMI 36 Pan Water (MFT*)	Uther See Analytical Price Guide Legionella Analysis Please use EMSL					
Count) M008 Culturable fun	ai - Surface Samples (Includes									
Penicillium, Aspergili	us, Cladosporium, Stachybotrys	f								
Species ID & Count)	re Gram Stain & Count	*MFT= Membrane Filtration Technique								
M010 Bacteria Coun	t & ID - 3 Most Prominent	***P/A= Prese	**MPN= Most Probable Number ***P/A= Presence/Absence							
Name of Samples	. Courtney E McCall		Signature of Sampler:							
Hame of Ouripion	<u> </u>	Sample	P	otable/	Test	Volume/ Date/Time Temperature				
Sample #	Sample Location/Description	Type	Nor (Oply f	Potable	Code	Area	Collected	("C) (Lah Lite Only)		
Example A1	Kitchen Sink/Tap	Water	⊠ P		M017	100 mL	9/1/13 4:00 PM	(<u>200 000 011)</u>)		
2826 0967	Ambient	Air	ПР		M001	75L	5/25/19 745 am			
2826 0952	Library 2nd Floor	Air			M001	75L	5/25/19 815 am			
2826 0938	Classroom 238	Air	ПР		M001	75L	5/25/19 825 am			
2826 0937	Classroom 218	Air	ПР		M001	75Ł	5/25/19 835 am			
2826 0962 Home Mgmt Room 126 A			ПР		M001	75L	5/25/19 848 am			
Client Sample # (s): - Total #			Samples	: 9	Sample	s Receive Lab Use On	d Chilled?)	/es / No		
Relinquished (Client): Counter Com Cull			Date:	5/28/19		Time:				
Received (Lab):	L. Convorthy tunck	sh_	Date:	5/28/	19	Time: //	:10 am			
Comments/Speci	al Instructions:			7-7						
L							- UV 0C	<u>тин рі —</u>		

Page 1 of 2

10 D KY OC

EMSL Analytical, Inc.'s Laboratory Terms and Conditions are incorporated into this chain of custody by reference in their entirety.. Submission of samples to EMSL Analytical, Inc. constitutes acceptance and acknowledgment of all terms and conditions by Customer.

2

Controlled Document - COC-34 Micro R8 11/14/2017

9:271

Microbiology Chain of Custody

EMSL Order Number (Lab Use Only):

EMSL ANALYTICAL, INC. 200 ROUTE 130 NORTH CINNAMINSON, NJ 08077 PHONE: (800) 220-3675 FAX:(856) 786-0262

Additional pages of the chain of custody are only necessary if needed for additional sample information.

Sample #	Sample Location/Description	Sample Type	Potable/ NonPotable (Only for Waters)	Test Code	Volume/ Area	Date/Time Collected	Temperature (°C) (Lab Use Only)
2826 0948	Art Room, Room 115	Air		M001	75L	5/25/19 900 am	
2826 0968	Classroom 155	Air		M001	75L	5/25/19 908 am	
2826 0936	Cafeteria	Air		M001	75L	5/25/19 917 am	
2826 0944	FIELD BLANK	Air		M001	NA	5/25/19 NA	
				\bigcirc			
				\square			
·							
				_			
		· 			·		
		 			·		
·		·		 			
Campundario (Cana al al	In the stange						
Comments/Special	instructions:						
							I
L <u></u>							

Page 2 of 2

EMSL Analytical, Inc.'s Laboratory Terms and Conditions are incorporated into this chain of custody by reference in their entirety. Submission of samples to EMSL Analytical, Inc. constitutes acceptance and acknowledgment of all terms and conditions by Customer.

Controlled Document - COC-34 Micro R8 11/14/2017

Appendix B: Instrument Calibration Records

Certificate of Calibration

(.) Buck™ BioAire Pump Calibration Rotameter () BuckTM BioSlide Pump Calibration Rotameter

Serial number: <u>R14057</u>

Date Calibrated: 1/22/19 Calibration Due Date: 1/22/20

Flow Calibration

This is to certify that the rotameter listed above has been calibrated using a Buck Primary calibrator listed below which is calibrated according to A.P. Buck, Inc. calibration procedure APB-1, Ver. 6.2 and is traceable to the National Institute of Standards & Technology (N.I.S.T). A.P. Buck guarantees the accuracy of the rotameter to be within \pm 5% of the actual flow rate.

AMBIENT CONDITIONS: Temperature 74±3° F Relative Humidity 50±10%

Description	MFR.	Model	Serial #
Primary Calibrator	A.P. Buck Inc.	M30B	□ A40020 □ A40021

QA Approval By:

Information contained in this document should not be reproduced in any form without the written consent of A.P. Buck, Inc. It is for reference only and cannot be used as a form of endorsement by any private or governmental regulatory body.

> A.P. BUCK, INC. 7101 Presidents Drive, Suite 110 Orlando, FL 32809 Phone: 407-851-8602 407-851-8910 Fax:

CCA-004 REV-01 3/3/2006

CERTIFICATE OF CALIBRATION AND TESTING

TSI Incorporated, 500 Cardigan Road, Shoreview, MN 55126 USA

Tel: 1-800-874-2811 1-651-490-2811 Fax: 1-651-490-3824 http://www.tsi.com

			and the second se				and the second		
EN	VIRONMENT C	ONDITIONS				MODEI		982	
TE	MPERATURE		75.9 (24.4)	°F (°C)		TODEL		UUL	
RE	LATIVE HUMIDIT	Υ	34	%RH		DOLL NUM		P17100007	
BA	ROMETRIC PRES	SURE	29.08 (984.8)	inHg (hPa)		SERIAL INUME	SER	F17100007	
	🛛 AS LEFT			⊠ı	n Tol	ERANCE			
	□ As Found				DUT OI	F TOLERANCE			
		– C A L	IBRATI	ON VER	RIF	ΙΖΑΤΙΟ	N RESUL	т s —	
TI	MPERATURE Y	VERIFICATION		<u></u>	Sys	STEM T-101		Unit: °F (°C)	
#	STANDARD	MEASURED	ALLOWAB	LE RANGE	#	STANDARD	MEASURED	ALLOWABLE RANGE	
1	32.0 (0.0)	31.6 (-0.2)	31.0~33.0	(-0.6~0.6)	2	140.0 (60.0)	140.4 (60.2)	139.0~141.0 (59.4–60.6)	
HUMIDITY VERIFICATION					SYS	БТЕМ Н-120		Unit: %RH	
#	STANDARD	MEASURED	ALLOW	ABLE RANGE	#	STANDARD	MEASURED	ALLOWABLE RANGE	
1	10.0	9.8	7.	8~12.2	4	4 70.0 70.0		67.8~72.2	
2	30.0	30.6	27	.8~32.2	5	90.0	89.6	87.8~92.2	
3	50.0	50.4	47	.8~52.2					
C	D2 GAS VERIF	ICATION			Sys	стем G-101		Unit: ppm	
#	STANDARD	MEASURED	MEASURED ALLOWABLE RA		#	STANDARD	MEASURED	ALLOWABLE RANGE	
1	0	0		0~50	4	3000	3005	2910~3090	
2	500	487	487 450~		5	5042	5034	4891~5193	
3	1000	1000	95	0~1050					
С	O GAS VERIFI	CATION			Sys	TEM G-101		Unit: ppm	
#	STANDARD	MEASURED	ALLOW	ABLE RANGE	#	STANDARD	MEASURED	ALLOWABLE RANGE	
1	35	35	3	32~38	2	100	99	97~103	
Construction of the local division of the lo	the second s					the state of the s			

TSI does hereby certify that the above described instrument conforms to the original manufacturer's specification (not applicable to As Found data) and has been calibrated using standards whose accuracies are traceable to the United States National Institute of Standards and Technology (NIST) or has been verified with respect to instrumentation whose accuracy is traceable to NIST, or is derived from accepted values of physical constants. TSI's calibration system is registered to 1SO-9001:2015.

Measurement Variable	System ID	Last Cal.	Cal. Due	Measurement Variable	System ID	Last Cal.	Cal. Due
Temperature	E003986	02-12-19	08-31-19	Temperature	E003987	02-12-19	08-31-19
Humidity	E002008	01-25-19	07-31-19	5000 CO2	3341007	12-14-18	12-11-21
200 CO	CC15018	04-15-19	04-12-22	N2	UT-102	04-30-19	04-30-24
Air	GT-0540	01-19-19	01-18-22	Flow	E003341	09-14-18	09-30-19
Flow	E003978	02-26-19	02-29-20	Flow	E003502	02-26-19	02-29-20
Flow	E003501	09-04-18	09-30-19	2000 C4H8	EB0081455	06-27-18	06-26-21
100 C4H8	EB0100212	09-29-17	09-29-21				

Doc. ID: CERT_GEN_WCC

himo CALIBRATED

May 23, 2019

CERTIFICATE OF CALIBRATION AND TESTING

TSI Incorporated, 500 Cardigan Road, Shoreview, MN 55126 USA

//////

Tel: 1-800-874-2811 1-651-490-2811 Fax: 1-651-490-3824 http://www.tsi.com

ENV	Invironment Conditions						F		7575-X	
Tem	IPERATURE		75.5 (24.2)	°F (°C)]["	100		6		
Rel	ATIVE HUMIDITY		38	%RH		EDI		NUMBED		7575¥1711006
BAR	ROMETRIC PRESSU	JRE	28.66 (970.5)	inHg (hPa)		DERI	AI	LINUMBER		1919/111000
AS LEFT XIN TOL						eran 7 Tol	NC	e Rance		
		- C A L I	BRATI	ON VER	IF	ιс	A	ΤΙΟΝ	RESULT	' S –
Тн	ERMO COUPLE)		Syst	EM P	PRE	S	SURE01-02		Unit: °F (°C)
#	STANDARD	MEASURED	ALLOW	ABLE RANGE	#	S	ST/	NDARD	MEASURED	ALLOWABLE RANGE
1	73.5 (23.1)	73.1 (22.8)	71.5~75	71.5~75.5 (21.9~24.2)						
BA	ROMETRIC PR	IC PRESSURE SYSTEM PRESSURE01-02 Unit: i							Unit: inHg (hPa)	
#	STANDARD	MEASURED	AL	ALLOWABLE RANGE			#	STANDARD	MEASURED	ALLOWABLE RANGE
1	28.67 (970.9)	28.65 (970.2)	28.10-	28.10~29.24 (951.6~990.2)						

TSI does hereby certify that the above described instrument conforms to the original manufacturer's specification (not applicable to As Found data) and has been calibrated using standards whose accuracies are traceable to the United States National Institute of Standards and Technology (NIST) or has been verified with respect to instrumentation whose accuracy is traceable to NIST, or is derived from accepted values of physical constants. TSI's calibration system is registered to ISO-9001:2015.

Cal. Due

02-29-20

08-31-19

Measurement Variable Temperature Pressure System IDLast Cal.E00317002-21-19E00398202-07-19

Measurement Variable	System ID
Pressure	E005254
DC Voltage	E003493
DC Voltage	E003493

Last Cal.	Cal. Due
10-29-18	10-31-19
08-23-18	08-31-19

Sharof M-Elmury

VERIFIED

May 22, 2019

DOC ID CERT_GEN_WCC