

February 25, 2021

Prince George's County Public Schools 13300 Old Marlboro Pike Upper Marlboro, Maryland 20772 Attention: Mr. Alex Baylor

RE: Indoor Air Quality Assessment, Ernest E. Just Middle School Purchase Order: 734977 ATI Project Number: 21-602

Dear Mr. Baylor:

Prince George's County Public Schools requested that ATI, Inc., conduct a proactive indoor air quality (IAQ) assessment at Ernest E. Just Middle School on January 27, 2021 and a reassessment at the Computer Lab on February 24, 2021. The assessments' key findings are enclosed in the Executive Summary on page three, and the official laboratory report for total fungal spore trap sampling is enclosed in Appendix A.

Thank you for the opportunity to provide Industrial Hygiene services for Prince George's County Public Schools. If you have any questions regarding this report, please contact us at (202) 643-4283.

Sincerely, ATI, INC.

mikal Frater

Mikal Frater Industrial Hygienist

Nate Burgei, CIH, CSP Certified Industrial Hygienist

Indoor Air Quality Assessment Report

Prince George's County Public Schools Ernest E. Just Middle School 1300 Campus Way N Bowie, Maryland 20721

Prepared for:

Prince George's County Public Schools 13300 Old Marlboro Pike Upper Marlboro, Maryland 20772

February 25, 2021

Submitted by:

ATI Job # 21-602

Table of Contents

Table of Contents	
1 Executive Summary	1
2 Assessment Methods	
3 Visual Observations	2
4 Thermal Environmental Conditions for Human Occupancy	4
4.1 Temperature	4
4.2 Relative Humidity	4
4.3 Carbon Dioxide	
4.4 Carbon Monoxide	
5 Total Fungal Air Sampling Results	7
6 Summary of Findings	8
6 Summary of Findings	8

List of Tables

Table 1: Visual Observations and Sampling Locations	2
Table 2: Temperature	
Table 3: Relative Humidity	
Table 4: Carbon Dioxide	
Table 5: Carbon Monoxide	
Table 6: Aspergillus/Penicillium Concentration Comparison	

Appendices

Appendix A: Laboratory Report and Chain of Custody Appendix B: Instrument Calibration Records

Abbreviations and Acronyms

AHU	Air-Handling Unit
AIHA	American Industrial Hygiene Association
ASHRAE	American Society of Heating, Refrigerating and Air-Conditioning Engineers
ASTM	American Society for Testing and Materials
CO	Carbon Monoxide
CO ₂	Carbon Dioxide
EMLAP	Environmental Microbiology Laboratory Accreditation Program
HVAC	Heating, Ventilating, And Air-Conditioning
IAQ	Indoor Air Quality
NIST	National Institute for Standards and Technology
NVLAP	National Voluntary Laboratory Accreditation Program
RH	Relative Humidity
Rev.	Revision

Abbreviations involving scientific volume and measurements involving media or water sampling

Spores/m ³	Mold spores per cubic meter of air
LPM	Liters Per Minute
NTE	Not to exceed
°F	degree Fahrenheit
PPM	Parts Per Million

1 Executive Summary

ATI conducted a proactive Indoor Air Quality (IAQ) assessment on January 27, 2021, at Ernest E. Just Middle School, located at 1300 Campus Way N in Bowie, Maryland. The Computer Lab Room 302 was reassessed on February 24, 2021 after the initial assessment indicated the Computer lab had *Aspergillus/Penicillium*-like mold spore concentration greater than 1,000 spores/m³.

The initial assessment included a visual assessment of randomly selected classrooms and other frequently occupied spaces, such as the cafeteria/gym, the main office, and randomly selected classrooms, for potential IAQ contributors and pathways. On February 24, 2021, the Computer Lab was reassessed after unusual spore concentrations were present during the first assessment. Steps were taken between the two assessments to repair water issues and treat the area for fungal growth. As part of these assessments, ATI measured common IAQ comfort parameters, including temperature, relative humidity, carbon dioxide, and carbon monoxide. Also, ATI collected total fungal air samples on spore trap cassettes for microbiological analysis.

The following is a summary of the key findings from this assessment:

- 1. The average temperature in four tested locations was less than the ASHRAE recommended winter occupancy comfort range of 68-75°F on January 27, 2021. The Computer Lab Room 302 had a temperature within the ASHRAE recommended winter temperature range on February 24, 2021.
- 2. On January 27, 2021, the average relative humidity in all indoor sampled locations was less than the ASHRAE recommended maximum humidity of 65%, but all indoor tested spaces except one also had a relative humidity less than 30%, which can cause respiratory dryness in occupants. On February 24, 2021, the Computer Lab Room 302 had a relative humidity of 19%, which is less than the ASHRAE recommended humidity and less than 30%.
- 3. The averaged carbon dioxide concentration in all indoor locations, on both assessment dates, were less than the maximum recommended indoor concentration for the day of each assessment.
- 4. The average carbon monoxide concentrations in all areas, for both assessments, were less than the EPA and ASHRAE recommended limit of 9 ppm.
- 5. The *Aspergillus/Penicillium*-like spore concentrations in the Computer Lab Room 320 was greater than 1,000 spores/m³, which suggests possible indoor spore amplification.
- 6. The Computer Lab Room 320 was reassessed on February 24, 2021 and the *Aspergillus/Penicillium*-like spore concentration was reduced up to 92%, which was equal to the outdoor *Aspergillus/Penicillium*-like spore concentration. ATI has no other recommendations at this time.

2 Assessment Methods

Mikal Frater, Industrial Hygienist of ATI, Inc. conducted the initial visual assessment and air sampling on January 27, 2021. Sampled rooms were randomly selected and accounted for approximately 10% of classrooms or a minimum of five samples. Ms. Frater documented visual observations at the time she collected the air samples. Nate Burgei, CIH, CSP conducted a follow-up inspection on February 24, 2021 in the Computer Lab Room 302, after the room was evaluated and treated for mold presence. ATI references the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) *Standard 62.1 – 2016* and ASHRAE *Standard 55 – 2017* when providing IAQ services to clients. ASHRAE is an industry leader on energy efficiency and indoor air quality.

All measurements and air samples were collected between three-six feet from floor elevation, which represents a typical adult breathing zone, and away from air-supply and return diffusers. Real-time direct readings for temperature, relative humidity, carbon dioxide (CO₂), and carbon monoxide (CO), were measured with a calibrated TSI Q-Trak 7575-X Meter and attached 982 Probe.

Total fungal air samples were collected with a field calibrated Buck BioAire High-Volume Sampling Pump on Zefon Air-O-Cell spore-trap cassettes at a flow rate of 15 liters per minute for a sample volume of 75 liters or 150 liters, depending on the sampling day. AMA Analytical Services, Inc. of Lanham, MD analyzed the samples using direct microscopic examination per ASTM D7391, which spores both viable and non-viable mold spores and particulates, which combined yields total fungal results. AMA participates in the National Institute of Standards and Technology's (NIST) National Voluntary Laboratory Accreditation Program (NVLAP) for general laboratory performance and management, and the American Industrial Hygiene Association (AIHA) for Environmental Microbial Laboratory Accreditation Program (EMLAP). The AMA laboratory reports are included in Appendix A.

3 Visual Observations

Table 1 lists the areas, conditions, observations, and other pertinent details related to this IAQ assessment. On the date of the sampling event, few occupants were present in the school because of the COVID-19 global pandemic.

Sample Location	Observations
Parking Lot – Outdoors	Partly cloudy skiesLight vehicle traffic observed
Main Office	 Three occupants in the area during sampling Door to corridor CLOSED, and adjoining offices OPEN during sampling Trace dust accumulation Faux plants on windowsill No visible growth or odors observed Two air diffusers and two air returns in this space Light brown stain on ceiling tile near window Space is approximately 680 ft.²
Cafeteria	 Two large air returns, 20 air diffusers Light brown stain on ceiling tile in the middle of cafeteria No odors or visible mold growth observed Doors to kitchen OPEN during sampling Air returns appeared clean Faux plants near stage Three occupants in area during sampling Door to parking lot OPEN during sampling
Gym	 No odors, stained ceiling tiles, or visible mold growth observed Two occupants in the area during sampling Doors to corridor CLOSED during sampling Three large air returns, 28 air diffusers Emergency exit outside access Noticeably cooler in temperature
Room 144	 Two occupants in the area during sampling No stained ceiling tiles, visible mold growth, or odor observed Rooms separated by panels Trace dust accumulation in this space One wall unit ON during sampling One air diffuser in this space; two air returns

Table 1: Visual Observations and Sampling Locations

ati_{INC} INDOOR AIR QUALITY REPORT

ERNEST E. JUST MIDDLE SCHOOL

Sample Location	Observations				
	Space is approximately 1,064 ft. ²				
	No odors or visible mold growth observed				
	 Two occupants in this space during sampling 				
	Trace dust accumulation				
Science Room 152	 Door to corridor CLOSED and adjoining rooms OPEN during sampling 				
	 Eight air diffusers and four returns in this space 				
	 Very light grey stain on ceiling tile near return vent 				
	Space is approximately 1,408 ft. ²				
	Two air returns, one air diffuser in this space				
	One wall unit ON during sampling				
Room 322	No stained ceiling tile, observed growth, or odor in this space				
	 In hallway outside of classroom – active leak, missing ceiling tiles 				
	Space is approximately 864 ft. ²				
	Eight air diffusers, four air returns in this space				
D 990	Two occupants in area during sampling				
Room 336	 Very small light brown stain on ceiling tile near exhaust vent 				
	No growth or odor observed				
	Space is approximately 1,232 ft. ²				
	One air return, one air diffuser; one wall unit OFF during sampling				
	Two occupants in area during sampling				
Room 307	No observed odor or growth				
	 Four stained ceiling tiles along back of room and above window 				
	Trace dust accumulation				
	Space is approximately 864 ft. ²				
	 Two air returns, one air diffuser One wall unit ON during sampling 				
	 One wall unit ON during sampling One occupant in area during sampling 				
	 Door to corridor CLOSED 				
Computer Lab, Room 320	 One light brown stain on ceiling tile above printer 				
	 No growth or odor observed 				
	 Door to adjoining rooms OPEN during sampling 				
	Trace dust accumulation				
	 Space is approximately 1,008 ft.² 				
Sample Location	February 24, 2021 Reassessment Observations				
	Unoccupied during reassessment				
	 Door to hallway closed, but doors to adjacent classrooms were open 				
	Light dust on the floor and horizontal surfaces				
Computer Lab, Room 302	Heat was off, but the heater was warm suggesting it was on auto				
	Ceiling tiles mostly clean, minor stains near the door to Foreign Language room				
	• The air supply in the Foreign Language room, closest to connecting door had				
	significant water staining, could affect the Computer Lab if it is harboring mold				

4 Thermal Environmental Conditions for Human Occupancy

ASHRAE Standard 55-2017, Thermal Environmental Conditions for Human Occupancy, addresses thermal comfort in an office environment, which means that an employee wearing a normal amount of clothing feels neither too cold nor too warm. This standard discusses thermal comfort within the context of air temperature, humidity, and air movement and provides recommended ranges for temperature and humidity that are intended to satisfy 80% of occupants. The recommended ASHRAE ranges are referenced below by each comfort parameter.

4.1 Temperature

The ASHRAE standard establishes a winter comfort range of between 68°F and 75°F and a summer range of between 73°F and 79°F. The temperature measured during the January 27, 2021, assessment and the February 24, 2021 reassessment are summarized in Table 2. As indicated by the data in the table, temperatures in the school averaged between 62°F and 73°F on January 27, with four locations less than the ASHRAE recommended winter range. The temperature in the Computer Lab on February 24, 2021 was 72°F.

Sample Location	1/27/2021 Initial Assessment ∘F			ASHRAE Standard		
	Min	Max	Average	٥F		
Outdoors	47	51	49	N/A		
		Indoors				
Main Office	64	66	65	68-75°F		
Cafeteria	65	65	65	68-75°F		
Gym	61	62	62	68-75°F		
Room 144	66	68	67	68-75°F		
Science Room 152	71	72	72	68-75°F		
Room 322	72	73	73	68-75°F		
Room 336	72	72	72	68-75°F		
Room 307	70	71	71	68-75°F		
Computer Lab, Room 302	73	73	73	68-75°F		
2/24/2021 Reassessment Temperature in °F						
Outdoors	65	69	67	N/A		
Indoors						
Computer Lab, Room 302	72	72	72	68-75°F		

Table 2: Temperature

4.2 Relative Humidity

Relative humidity is a key factor for mold growth. Mold has the potential of growing on suitable surfaces with humidity levels above 65%. ASHRAE *Standard 62.1-2016, Ventilation for Acceptable Indoor Air Quality,* recommends a maximum indoor relative humidity of 65% to prevent condensation of moisture on surfaces. Relative humidity less than 30% may result in drying of occupants' mucous membranes and skin. Relative humidity for January 27, 2021 and February 24, 2021 are summarized in Table 3. As indicated by the data in the table, the average relative humidity on January 27, 2021 ranged between 17% and 30% with all tested locations measuring less than the ASHRAE maximum recommendation of 65% relative humidity, and all except one of the tested locations also measuring less than 30% relative humidity.

ati_{INC} INDOOR AIR QUALITY REPORT

ATI reassessed the Computer Lab Room 302 that had unusual fungal spore concentrations on February 24, 2021, after remediation actions were completed. ATI also reassessed the relative humidity in the space, and the average relative humidity was 19%, less than the ASHRAE maximum recommendation of 65% relative humidity and less than 30% relative humidity.

Table 3: Relative Humidity					
Sample Location	1/27/2021 Initial Assessment (% RH)			ASHRAE Standard	
	Min	Max	Average	(% RH)	
Outdoors	40	44	42	N/A	
		Indoors			
Main Office	28	31	30	< 65	
Cafeteria	22	23	23	< 65	
Gym	26	28	27	< 65	
Room 144	27	28	28	< 65	
Science Room 152	22	23	23	< 65	
Room 322	21	21	21	< 65	
Room 336	20	21	21	< 65	
Room 307	21	23	22	< 65	
Computer Lab, Room 302	16	17	17	< 65	
2/24/2021 Reassessment Relative Humidity (%RH)					
Outdoors	18	20	19	N/A	
Indoors					
Computer Lab, Room 302	19	19	19	< 65	

4.3 Carbon Dioxide

The carbon dioxide concentration in an occupied building is often used as a surrogate contaminant to gauge the ventilation system's efficiency at providing enough fresh air to the space based on the number of individuals in the space. Carbon dioxide is a by-product of human respiration and does not pose an acute health hazard in typical commercial buildings, but a buildup of carbon dioxide from human respiration may suggest that the ventilation system is not providing enough fresh air to overcome the rate of occupant respiration. This can be from lack of outdoor air supplied to the space, or the space is beyond the occupancy limit of the ventilation system design. The logic is that if carbon dioxide can accumulate in the space over a single workday, then other, potentially more hazardous, contaminants may also accumulate in the space. Indoor air quality professionals rely on standards established by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) when evaluating indoor concentrations of carbon dioxide. ASHRAE Standard 62.1-2016 states that comfort (odor) criteria with respect to human bioeffluents are likely to be satisfied if the ventilation maintains an indoor carbon dioxide concentration to less than 700 parts per million (ppm) greater than the outdoor air concentration.

Carbon dioxide concentrations are summarized in Table 4. On the day of the initial assessment, the average outdoor carbon dioxide concentration was 379 ppm, which calculates to a maximum indoor concentration of 1,079 ppm (700 + 379). All tested locations indoors were less than the recommended maximum for the day of the assessment.

ATI reassessed the Computer Lab Room 302 which had unusual fungal spore concentrations on February 16, 2021, after remediation actions were completed. The carbon dioxide concentration measured during the reassessment is included in Table 4. The average outdoor carbon dioxide concentration on February 16, 2021 was 419 ppm, which calculates to a

maximum indoor concentration of 1,119 ppm (700 + 419). All tested locations indoors were less than the recommended maximum for the day of the reassessment.

Table 4: Carbon Dioxide					
Sample Location	1/27/2021 Initial Assessment Concentration (parts per million)			ASHRAE Standard	
·	Min	Max	Average	(ppm) NTE	
Outdoors	365	393	379	N/A	
		Indoors			
Main Office	449	454	452	<1,079	
Cafeteria	354	385	370	<1,079	
Gym	366	389	378	<1,079	
Room 144	382	385	384	<1,079	
Science Room 152	401	421	411	<1,079	
Room 322	398	413	406	<1,079	
Room 336	401	402	402	<1,079	
Room 307	392	426	409	<1,079	
Computer Lab, Room 302	388	390	389	<1,079	
2/24/2021 Reassessment Concentration (parts per million)					
Outdoors	408	429	419	N/A	
Indoors					
Computer Lab, Room 302	423	429	426	< 1,119	

4.4 Carbon Monoxide

Carbon monoxide is a colorless and odorless gas produced by the incomplete combustion of carbon containing fuels. Oil, gasoline, diesel fuels, wood, coke, and coal are the major sources of carbon monoxide. ASHRAE recommends that carbon monoxide not exceed nine ppm indoors over an eight-hour time-weighted average. ATI measured carbon monoxide concentrations using a TSI Q-Trak model number 7575-X with an attached IAQ probe (model number 982). The instrument's carbon monoxide sensor has an error range of $\pm 3\%$ of the reading or three (3) ppm, whichever is greater. As indicated by the data in Table 5, carbon monoxide concentrations on January 27, 2021 were less than the Q-Trak's detection limit throughout the school.

ATI reassessed the Computer Lab Room 302 which had unusual fungal spore concentrations on February 24, 2021 after remediation actions were completed. The carbon monoxide concentration measured during the reassessment is included in Table 5. The carbon monoxide concentration from the reassessment was also less than the Q-Trak's limit of detection and less than the EPA/ASHRAE recommended maximum of 9 ppm.

Sample Location	1/27/2021 Initial Assessment Concentration (parts per million)			ASHRAE Standard	
	Min	Max	Average	(ppm)	
Outdoors	<3	<3	<3	N/A	
Inside					
Main Office	<3	<3	<3	< 9	

Table 5: Carbon Monoxide

ati_{NG} INDOOR AIR QUALITY REPORT

ERNEST E. JUST MIDDLE SCHOOL

Sample Location	1/27/2021 Initial Assessment Concentration (parts per million)			ASHRAE Standard	
	Min	Max	Average	(ppm)	
Cafeteria	<3	<3	<3	< 9	
Gym	<3	<3	<3	< 9	
Room 144	<3	<3	<3	< 9	
Science Room 152	<3	<3	<3	< 9	
Room 322	<3	<3	<3	< 9	
Room 336	<3	<3	<3	< 9	
Room 307	<3	<3	<3	< 9	
Computer Lab, Room 302	<3	<3	<3	< 9	
2/24/2021 Reassessment Concentration (parts per million)					
Outdoors	<3	<3	<3	N/A	
Indoors					
Computer Lab, Room 302	<3	<3	<3	< 9	

5 Total Fungal Air Sampling Results

Mold is carried indoors through building entrances, open windows, loading docks, foot traffic into buildings, and the HVAC system. To thrive indoors, mold requires a food source, proper temperature and humidity to foster its growth.

The January 27, 2021 initial mold assessment sampled air using spore trap cassettes in randomly selected classrooms and other areas throughout the facility. The February 24, 2021 reassessment focused only on the Computer Lab Room 302 which had a *Aspergillus/Penicillium*-like mold spore concentration greater than 1,000 spores/m³. These cassettes collect both viable spores, those capable of producing more fungal colonies, and non-viable spores, which cannot reproduce. Based upon recognized industry practices, indoor mold concentrations are compared with those detected outdoors, which are also known as ambient or baseline samples.

In normal circumstances, the diversity of spores identified indoors and outdoors should be similar with some exceptions. The high concentration of one or two species of fungal spores identified indoors and the absence of the same species outdoors can indicate a moisture problem with the potential to degrade the air quality. Fungi species present indoors are typically found at levels ranging from approximately 10-50% of their levels in the outdoor air, reflecting the filtering by the building's HVAC system.

The results from the January 27, 2021 initial assessment suggest the indoor concentrations were generally favorable compared to the outdoor concentrations, except for the Computer Lab Room 302. The total ambient, outdoor spore concentration was 371 spores/m³, which is on the lower range of outdoor mold concentrations. The *Aspergillus/Penicillium*-like spore concentration measured in the Computer Lab Room 302 was 1,007 spores/m³, which suggests that some amount of indoor spore amplification has taken place at some point, either current or in the past. This space was selected to be reassessed on February 24, 2021. The other assessed rooms all had total spore concentrations typical for an indoor, occupied space and do not suggest active mold spore amplification in those spaces.

The Computer Lab Room 302 was reassessed on February 24, 2021 and the total spore concentration and the *Aspergillus/Penicillium*-like spore concentration dropped considerably. The *Aspergillus/Penicillium*-like spore concentration in the Computer Lab was 78 spores/m³, a reduction of more than 92%, and a total spore concentration of 494 spores/m³.

Differences in concentrations between both dates of assessment are summarized in Table 6.

Sample Location	January 27, 2021 Concentrations (Spores/m ³)	February 24, 2021 Concentrations (Spores/m ³)	% Change
Computer Room, 302	1,007	78	-92%

Table 6: Aspergillus/Penicillium Concentration Comparison

The official laboratory report with spore trap samples collected on January 27, 2021, is presented in Appendix A.

6 Summary of Findings

- 1. The average temperature in four tested locations was less than the ASHRAE recommended winter occupancy comfort range of 68-75°F on January 27, 2021. The Computer Lab Room 302 had a temperature within the ASHRAE recommended winter temperature range on February 24, 2021.
- 2. On January 27, 2021, the average relative humidity in all indoor sampled locations was less than the ASHRAE recommended maximum humidity of 65%, but all indoor tested spaces except one also had a relative humidity less than 30%, which can cause respiratory dryness in occupants. On February 24, 2021, the Computer Lab Room 302 had a relative humidity of 19%, which is less than the ASHRAE recommended humidity and less than 30%.
- 3. The averaged carbon dioxide concentration in all indoor locations, on both assessment dates, were less than the maximum recommended indoor concentration for the day of each assessment.
- 4. The average carbon monoxide concentrations in all areas, for both assessments, were less than the EPA and ASHRAE recommended limit of 9 ppm.
- 5. The *Aspergillus/Penicillium*-like spore concentrations in the Computer Lab Room 320 was greater than 1,000 spores/m³, which suggests possible indoor spore amplification.
- 6. The Computer Lab Room 320 was reassessed on February 24, 2021 and the *Aspergillus/Penicillium*-like spore concentration was reduced up to 92%, which was equal to the outdoor *Aspergillus/Penicillium*-like spore concentration. ATI has no other recommendations at this time.

We appreciate the opportunity to provide these IAQ testing services for you. If you have any questions, please contact us at (202) 643-4283.

Best, ATI, INC.

nikal Frater

Mikal Frater Industrial Hygienist

Nate Burgei, CIH, CSP Certified Industrial Hygienist

Appendix A: Laboratory Report and Chain of Custody

Chain of Custody: Client: Address: Attention:	285329 ATI, Inc. 9220 Rumsey Roa Suite 100 Columbia, MD 210 Mikal Frater					Job Location:	Ernest E. Just Ele Not Provided 21-602 Not Provided	ementary Sch	ool IAQ	Date Submitted: Person Submitting: Date Analyzed: Report Date:		01/27/202 Mikal Frate 02/04/202 02/04/202	er 1		
AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location		285329-1 21-602-1 CD Air-O-Cell 75 Acceptable 2 Parking Lot				AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location	0)2-2		AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location	21- CD Air- 75 Acc 1	O-Cell			
	Raw Ct	Trav/Flds	A.S.	sp/m ³	%		Raw Ct	Trav/Flds	A.S. sp/m ³ %		Raw Ct	Trav/Flds	A.S.	sp/m ³	%
Alterr	naria					Alternari	a			Alternaria					
Ascosp	oores 2	15	53	106	28.6%	Ascospore	s			Ascospores	4	15	53	212	40%
Basidiosp	oores 5	15	53	265	71.4%	Basidiospore	s			Basidiospores	3	15	53	159	30%
Bipolaris/Drechslera/H	lelm.					Bipolaris/Drechslera/Helm	n.			Bipolaris/Drechslera/Helm.					
Chaeton	nium					Chaetomiur	n			Chaetomium					
Cladospo	prium					Cladosporiur	m			Cladosporium	1	15	53	53	10%
Curvu	Ilaria					Curvulari	a			Curvularia					
Penicillium / Asperg	gillus Present	15	53	<53		Penicillium / Aspergillu	IS			Penicillium / Aspergillus	2	15	53	106	20%
Smuts/Periconia/Myxomyc	cetes					Smuts/Periconia/Myxomycete	IS			Smuts/Periconia/Myxomycetes					
Stachybotrys/Memnor	niella					Stachybotrys/Memnoniell	a			Stachybotrys/Memnoniella					
♦ Uloclad	dium					Ulocladiur	m			Ulocladium					
Unkn	nown					Unknow	'n			Unknown					
Nigros	pora					Nigrospor	a			Nigrospora					
Other Color	rless					Other Colorles	s			Other Colorless					
Hyphal Fragme	ents [*]					Hyphal Fragments	s [*]			Hyphal Fragments*					
Total Raw	Ct: 7		Total	sp/m ³ :	371	Total Raw C	t: 0		Total sp/m ³ : 0	Total Raw Ct:	10	٦	fotal s	sp/m ³ :	530
	Comm					N	Comments o Mold Spores O				Commen	its			

Chain of Custody: Client: Address: Attention:	285329 ATI, Inc. 9220 Rumsey R Suite 100 Columbia, MD 2 Mikal Frater					Job Location:NoJob Number:21	rnest E. Just ot Provided I-602 ot Provided	Elementary	IAQ	Date Submitted:01/27/2021Person Submitting:Mikal FraterDate Analyzed:02/04/2021Report Date:02/04/2021							
AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location		285329-4 21-602-4 CD Air-O-Cell 75 Acceptable 1 Cafeteria				AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location	21 Cl Ai 75 Ac 1	ir-O-Cell				AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location	21- CD Air- 75 Aco 1	5329-6 602-6 -O-Cell ceptable om 144			
	Raw Ct	Trav/Flds	A.S.	sp/m ³	%		Raw Ct	Trav/Flds	A.S.	sp/m ³	%		Raw Ct	Trav/Flds	A.S.	sp/m ³	%
Alterr	naria					Alternaria						Alternaria					
Ascosp	ores 1	15	53	53	6.7%	Ascospores	1	15	53	53	33.3%	Ascospores	Present	15	53	<53	
Basidiosp	oores 6	15	53	318	40%	Basidiospores	2	15	53	106	66.7%	Basidiospores	Present	15	53	<53	
Bipolaris/Drechslera/H	lelm.					Bipolaris/Drechslera/Helm.						Bipolaris/Drechslera/Helm.					
Chaetor	nium					Chaetomium						Chaetomium					
Cladospo	orium 2	15	53	106	13.3%	Cladosporium						Cladosporium					
Curvu	Ilaria					Curvularia						Curvularia					
Penicillium / Asperg	gillus 6	15	53	318	40%	Penicillium / Aspergillus						Penicillium / Aspergillus	5	15	53	265	100%
Smuts/Periconia/Myxomyc	cetes					Smuts/Periconia/Myxomycetes						Smuts/Periconia/Myxomycetes					
Stachybotrys/Memnon	niella					Stachybotrys/Memnoniella						Stachybotrys/Memnoniella					
♦ Uloclad	dium					Ulocladium						Ulocladium					
Unkn	nown					Unknown						Unknown					
Nigros	pora					Nigrospora						Nigrospora					
Other Color	rless					Other Colorless						Other Colorless					
Hyphal Fragme	ents [*]					Hyphal Fragments*						Hyphal Fragments*					
Total Raw	Ct: 15		Total	sp/m³:	795	Total Raw Ct:	3	٦	fotal s	sp/m ³ :	159	Total Raw Ct:	5	٦	fotal s	p/m ³ :	265
	Com	iments					Comme	ents					Commer Very Light 7				

Chain of Custody: Client: Address: Attention:	285329 ATI, Inc. 9220 Rumsey R Suite 100 Columbia, MD 2 Mikal Frater					Job Location:	Ernest E. Just Not Provided 21-602 Not Provided	Elementary S	chool IA	AQ		Date Submitted: Person Submitting: Date Analyzed: Report Date:	01/27/2021 Mikal Frater 02/04/2021 02/04/2021				
AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location		285329-7 21-602-7 CD Air-O-Cell 75 Acceptable 1 Science Room 152				AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location	21 Cl Ai 75 Ad 1	r-O-Cell				AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location	21 CI Ain 75 Ac 1	r-O-Cell			
	Raw Ct	Trav/Flds	A.S.	sp/m ³	%		Raw Ct	Trav/Flds	A.S.	sp/m ³	%		Raw Ct	Trav/Flds	A.S.	sp/m ³	%
Alterr	naria					Alternari	a					Alternaria					
Ascosp	ores					Ascospore	S					Ascospores	2	15	53	106	66.7%
Basidiosp	ores 2	15	53	106	33.3%	Basidiospore	es 3	15	53	159	75%	Basidiospores	1	15	53	53	33.3%
Bipolaris/Drechslera/H	elm.					Bipolaris/Drechslera/Helm	n.					Bipolaris/Drechslera/Helm.					
Chaetor	nium					Chaetomiur	n					Chaetomium					
Cladospo	rium 3	15	53	159	50%	Cladosporiur	m					Cladosporium					
Curvu	laria					Curvulari	a					Curvularia					
Penicillium / Asperg	jillus 1	15	53	53	16.7%	Penicillium / Aspergillu	IS					Penicillium / Aspergillus					
Smuts/Periconia/Myxomyc	etes					Smuts/Periconia/Myxomycete	S					Smuts/Periconia/Myxomycetes					
Stachybotrys/Memnon	niella					Stachybotrys/Memnoniell	a					Stachybotrys/Memnoniella					
 Uloclad 	dium					Ulocladiur	n					Ulocladium					
Unkn	iown					Unknow	'n					Unknown					
Nigros	pora					Nigrospor	a 1	15	53	53	25%	Nigrospora					
Other Color	rless					Other Colorles	S					Other Colorless					
Hyphal Fragme	ents*					Hyphal Fragments	s [*]					Hyphal Fragments*					
Total Raw	Ct: 6	-	Total s	p/m ³ :	318	Total Raw C	t: 4		Total s	sp/m ³ :	212	Total Raw Ct:	3		Fotal s	p/m³:	159
	Com	ments					Comme	nts					Comme	nts			

Chain of Custody: Client: Address: Attention:	285329 ATI, Inc. 9220 Rumsey Suite 100 Columbia, MD Mikal Frater					Job Location:NJob Number:2	rnest E. Just lot Provided 1-602 lot Provided	t Elementary S	School	IAQ		Date Submitted: Person Submitting: Date Analyzed: Report Date:	01/27/2021 Mikal Frater 02/04/2021 02/04/2021
AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location		285329-10 21-602-10 TLW Air-O-Cell 75 Acceptable 1 Room 307				AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location	2 T A 7 1	85329-11 1-602-11 LW ir-O-Cell 5 cceptable computer Lab					
	Raw C	t Trav/Fl	ds A.S.	sp/m ³	%		Raw Ct	Trav/Flds	A.S.	sp/m ³	%		
Altern	naria					Alternaria	1						
Ascospo	ores					Ascospores	3						
Basidiospo	ores					Basidiospores	3						
Bipolaris/Drechslera/He	elm.					Bipolaris/Drechslera/Helm.							
Chaetom	nium					Chaetomium	ı						
Cladospoi	rium					Cladosporium	า 1	15	53	53	4.8%		
Curvul	laria					Curvularia	1						
Penicillium / Asperg	jillus 2	15	53	106	100%	Penicillium / Aspergillus	s <u>19</u>	15	53	1007	90.5%		
Smuts/Periconia/Myxomyce	etes					Smuts/Periconia/Myxomycetes	3						
Stachybotrys/Memnon	iella					Stachybotrys/Memnoniella	1						
 Uloclad 	dium					Ulocladium	ı						
Unkn	own					Unknown	ı						
Nigrosp	pora					Nigrospora	1						
Other Color	rless					Other Colorless	s 1	15	53	53	4.8%		
Hyphal Fragme	ents [*]					Hyphal Fragments*	*						
Total Raw	Ct: 2		Total	sp/m ³ :	106	Total Raw Ct	: 21	1	otal s	sp/m ³ :	1113		
		mments sible trace.					Comme	ents					

ASTM D7391-09 Spore Trap Analysis Report

Chain of Custody:	285329	Job Name:	Ernest E. Just Elementary School IAQ	Date Submitted:	01/27/2021
Client:	ATI, Inc.	Job Location:	Not Provided	Person Submitting:	Mikal Frater
Address:	9220 Rumsey Road	Job Number:	21-602	Date Analyzed:	02/04/2021
	Suite 100	P.O. Number:	Not Provided	Report Date:	02/04/2021
	Columbia, MD 21045				
Attention:	Mikal Frater				

Spore Comparison Guide

The criteria for these specifications are outlined, but not limited to those listed, below. Final specifications may differ from the listed criteria for certain samples. AMA Analytical Services, Inc. reserves the right to make changes to these criteria at any time without notice.

Normal ecology	Slightly above normal ecology	Moderately above normal ecology	Substantially above normal ecology	

Stachybotrys / Memnoniella, and Chaetomium	Other Spores* (Control Present)	Other Spores* (No Control)
1-4 Spores: Yellow	< 10 Spores: Insignificant (no color)	< 10 Spores: Insignificant (no color)
5-9 Spores: Orange	<= Control's spore count: Green	10-20 Spores: Yellow
10+ Spores: Red	Between Control and 2x Control: Yellow	20-50 Spores: Orange
	Between 2x Control and 3x Control: Orange	50+ Spores: Red
	3x+ Control: Red	

*No evalutation is provided for the following spore types: Other, Other Colorless, and Unknown Fungi, and Misc

Interpretation of the data contained in this report is the sole responsibility of the client or the persons who conducted the field work. There are no federal or national standards for the number of fungal spores that may be present in the indoor environment. As a general rule and guideline that is widely accepted in the indoor air quality field, the numbers and types of spores that are present in the indoor environment should be comparable to those that are present outdoors at any given time. There will always be some mold spores present in "Normal" indoor environments. The purpose of sampling and counting spores is to help determine whether an abnormal condition exists within the indoor environment and if it does, to help pinpoint the area of contamination. Spore counts should not be used as the sole determining factor of mold contamination. There are many factors that can cause anomalies in the comparison of indoor and outdoor samples due to the dynamic nature of both of those environments.

This report is provided for informational and comparative purposes only and should not be relied upon for any other purpose. Sampling techniques, possible contaminants, unrepresentative samples and other similar or dissimilar factors may affect these results. With the statistical evaluation provided, as with all statistical comparisons and analyses, false-positive and false-negative results can and do occur. AMA Analytical Services, Inc. hereby disclaims any liability for any and all direct, indirect, punitive, incidental, special or consequential damages arising out of the use or interpretation of the data contained in, or any actions taken or omitted in reliance upon, this report.

ASTM D7391-09 Spore Trap Analysis Report

Chain of Custody:	285329	Job Name:	Ernest E. Just Elementary School IAQ	Date Submitted:	01/27/2021
Client:	ATI, Inc.	Job Location:	Not Provided	Person Submitting:	Mikal Frater
Address:	9220 Rumsey Road	Job Number:	21-602	Date Analyzed:	02/04/2021
	Suite 100	P.O. Number:	Not Provided	Report Date:	02/04/2021
	Columbia, MD 21045				
Attention:	Mikal Frater				

General Comments, Disclaimers, and Footnotes

Sample are analyzed following the instructions and guidelines outlined in ASTM 7391-09.
Acceptable: The sample was collected and delivered to the our location without disturbing the material on the sampling media. Unacceptable: 1. The sample trace (TR) has been disturbed. 2. The sample was damaged or otherwise unsuitable for analysis. 0 = No particulate matter detected; 1= >nd-~5% Particulate Loading; 2 = ~5%-25% Particulate Loading; 3 = ~25%- 75% Particulate Loading; 4 = ~75%-90% Particulate Loading; 5 = >90% Particulate Loading
 Based on their small size and very few distinguishing characteristics, Aspergillus and Penicillium cannot be differentiated by non-viable sampling methods. There are other types of spores whose morphology is similar to Aspergillus and Penicillium and cannot be differentiated by non-viable sampling methods. Examples of these similar spores are Acremonium, Paecilomyces, Wallemia, Trichoderma, Scopulariopsis, and Gliocladium. Smuts, Periconia and Myxomycetes are three different types of genera that have similar morphological characteristics. Bipolaris/Dreschlera/Helm: Bipolaris / Dreschlera / Helminthosporium are three different types of genera that have smiliar morphological characteristics. Other Colorless represents all colorless spores that are non-distinctive and unidentifiable. *Hyphal Fragments: A portion of the mycelium that becomes separated from the remainder of the thallus (vegetative body), each of which has the capacity to grow and form new individuals. Results for hyphal fragments are in fragments/m3 and are not incorporated in the total spore concentration. The droplet symbol () refers to water-intrusion indicator spores. These fungal spores, when found on indoor air samples, can be an indication of moisture sources and resultant fungal growth that may be problematic.
Analytical Sensitivity (A.S.): This is dependent on the volume of air collected, size of the trace, ocular diameter, and the amount of the trace that was analyzed. The value of "Present" indicated in the Raw Count column represents the presence of this spore type during the preliminary exam at 400x. The Raw Count converts to a whole number if the spore type is encountered again during the 600x-1,000x enumeration. The sp/m3concentration will be reported as less than the analytical sensitivity if "Present" is reported in the Raw Count. Results are reported to 3 significant figures. sp/m3: Spores per cubic meter. Uncertainty: for raw count in the range of 0-50 the SR is 0.375, 51-100 SR=0.333, 101-200 SR=0.257, >200 SR=0.245 All results are to be considered preliminary and subject to change unless signed by the Technical Director or Deputy. Analyst(s): Tristan Ward, Christopher Dell

Technical Director Tristan Ward

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these Laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from us. Sample types, locations, and collection protocols are based upon the information provided by the persons submitting them and, unless collected by personnel of these Laboratories, we expressly disclaim any knowledge and liability for the accuracy and completeness of this information. Residual sample material will be discarded in accordance with the appropriate regulatory guidelines, unless otherwise requested by the client.

MOLD SPORE DESCRIPTIONS

Ascospores

Ascospores are spores formed inside an ascus (asci-plural) or sac-like cell which is contained inside a fruiting body called an ascocarp or an ascoma (ascomata-plural). An ascus typically contains a definite nuimber of ascospores, usually eight. Ascospores are unique in shape, size, and color as to the Genus/species they represent. These spores are specific to fungi classified as Ascomycetes. They are ubiquitous in nature. Many decay organic matter, others are plant or animal pathogens. They can grow indoors on damp materials. Release of ascospores are released by forcible ejection and dispersed by wind, water, animals and other agents. Health Effects: Depending on the Genera, Ascospores may be allergenic.

Basidiospores

Basidiospores are reproductive spores produced by a group of fungi called basidiomycetes. This group includes the mushrooms, shelf fungi and various other macrofungi. Basidipspores serve as the main air (wind) dispersal units for the fungi and their release is dependent upon moisture. The structure of the spore complex can develop in various manners resulting in different appearances. It is often found growing in soil, decaying plant debris, compost piles and fruit rot. Indoors, it can be found on water damaged building materials (chipboard /OSB, plywood, wallpaper, and glue) as well as on food items (dried foods, cheeses, fruits, herbs, spices, cereals). Health effects: Some basidiospores may produce toxins and can act as allergens. They have not been reported to be pathogens.

Cladosporium

Cladosporium is the most common indoor and outdoor mold. The spores are wind dispersed and are often extremely abundant in outdoor air. Many species are commonly found on living and dead plant material. Indoors, they may grow on surfaces with high moisture or high humidity levels such as damp window sills, poorly ventilated bathrooms and soiled refrigerators. It produces powdery or velvety olive-green to brown or black colonies. The conidia (spores) vary depending on the species and are formed in simple or branching chains with multi-attachment points. Health Effects: Cladosporium species are rarely pathogenic to humans, but have been reported to occassionally cause sinusitis and pulmonary infections as well as infections of the skin and toenails. The airborne spores are significant allergens, and in large amounts they may severely affect asthmatics and people with respiratory diseases.

Nigrospora

Nigrospora is a ubiquitous, filamentous, dark colored fungus commonly isolated from soil, decaying plants, and seeds. Indoors, it is considered a laboratory contaminant. Colonies grow rapidly, initially white and woolly, later turning gray with black areas, and eventually turning black (both front and reverse). Its conidia are black, solitary, unicellular, slightly flattened horizontally, and have a thin equatorial germ slit. Health Effects: This mold may be a potential allergen. It is uncertain whether it is pathogenic to humans.

Other Colorless

- "Other Colorless" are all non-distinctive, unidentifiable, colorless spores seen on spore trap samples and include all the genera that do not have distinguishing morphology to belong to any of the other defined categories."

Penicillium/Aspergillus Like

Penicillium and Aspergillus are ubiquitous, filamentous fungi that are found in soil, decaying plant debris, compost piles, and in the air. Indoors, spores are commonly found in house dust, in water-damaged buildings (wallpaper, wallpaper glue, decaying fabrics, moist chipboards, and behind paint) as well as fruit and grains. They are the most common fungal genera, worldwide. Both produce chains of spores that are small, round to oval, colorless or slightly pigmented, and smooth to rough walled. These spores are indistinguishable between the two as well as other genera, such as Gliocladium, Trichoderma, Paecilomyces, and Scopulariopsis. They differ as to their conidiophores or fruiting bodies. While, Aspergillus spores are produced from phialides supported on conidia heads or swollen vesicles, Penicillium spores are produced on finger-like projections. Depending on species, typical colonies of Aspergillus are initially white and later turn to either shades of green, yellow, orange, brown or black. Texture is usually velvety to cottony. Typical colonies of Penicillium, other than Penicillium marneffei (yeast-like at 37oC), grow rapidly, white in color at first, later becoming bluish green with white borders with velvety to powdery textures depending on species. Some species produce radial patterns. Health Effects: Both Aspergillus and Penicillium are potential allergens. Several species of Aspergillus (A. flavus and A. parasiticus) produce aflatoxins or natually occurring mycotoxins that are toxic and carcinogenic. These are found in contaminated foodstuff and are hazardous to consumers. Penicillium has only one known species that is pathogenic to humans (P. marneffei) that causes lethal systemic infection (Penicilliosis) in immunocompromised individuals.

AMA Analytical Services, Inc. Focused on Results www.amalab.com

Focused on Results www.amalab.com AIHA-LAP (#100470) NVLAP (#101143-0) NY ELAP (10920) 4475 Forbes Blvd. • Lanham, MD 20706 (301) 459-2640 • (800) 346-0961 • Fax (301) 459-2643

CHAIN OF CUSTODY

(Please Refer To	This
Number For Inqu	ires)

285329

Mailing/Billing Info	mation:					Su	ıbmi	ttal In	forma	tion:						100		
1. Client Name: AT														4 C		IAQ		
	I Forbes Blvd							Locat #: 2										
3. Address 2: <u>Sui</u>																	P.O. #:	
						4.	Cor	ntact P	erson:	1411	Eur W	Frai	er				Cell: (8}8) 102 - 8621	
	Fax							lected									Cell:	
		as tecnnica	ally reasible		no I A ORMA					rovia	ea, A			sign a	eraun	s of 5-Day	y and email/fax to contacts on file. REPORT TO:]
AFTER HOURS	must be pre-scheduled)	4 Hours		יאז D3 D3		T DU	SUNE							_				
	ıe:	Same D	ay		ay av + 🖍	1	L.	1	Res	ults Re	quired	By No	on		-		atilinc.com	
	ue:	Next Da	iy I	Date D	ay + 2	-14	M										· .	
Comments:								. •					\mathbb{R}^{n+1}		erbals	<u>.</u>		
Asbestos Analysis]	TEM Bulk									ľ		Analy				
	cate Filter Type: (QTY)		C ELA	P 198.	4/Chatfi	icld			(QTY))							(QTY) pe)(QTY)	
Fiberglass	(QTY)		🗅 NY S 🖵 Resid	tate P	LM/TE	м	10	${1}$	QTY)				ŏ	*Pb A	ust wi ir	pe (wipe typ	OTY)	
TEM Air* - Please Indi	cate Filter Type:	-	TEM Dust*	iuai A:	511		_((211)					Q	Pb Soi	il/Solic	۱	(QTY)	
U AHERA	(QTÝ) (QTY)	-	Qual.	(pres/	/abs) Va	acuum	Dust.			_(QT)	()		ā	Pb TC	LP		.(QTY)	
□ Other (specify	(QTY)		Quan	. (s/arc	ea) Vac	uum D	5755	-95		(QTY)			Drinki	ing Water	iter 🖬 Pb	(QTY) □ Cu(QTY) □ As(_(QTY) □ Cu(QTY) □ As(QTY)	QTY) MTV)
PLM Bulk			Quan <u>TEM Water</u>	. (s/are	ea)Dust	D648	0-99_			(QTY)						(QTT)'G'Cu(QTT)'G'As(C	,
EPA 600 – Visua	al Estimate (QTY) 🖵 t(QTY)	Pos Stop -		(pres/	/abs)			OTY)]	Funga	l Analy	ysis			
NY State Friable	198.1(QTY)		Qual.	P 198.	2/EPA	100.2_			_(QT	Y)							Spore Traps/Air Samples:	
Grav. Reduction	198.1(QTY) ELAP 198.6(QTY)		🖵 EPA	100.1			_ (QT	Y)						Collec	tion M	edia	Y) Surface Vacuum Dust (ΟΤΥ
U Other (specify)(QTY)		All sa	mples	s receive	ed in g	ood c	onditio	n unles	ss othe	rwise r	noted.	ā	*Surfa	ice Sw	ab(Q1	(TY) Culturable ID Genus (Media)	(OTY)
Vermiculite			(TEM V		-									*Surfa	ace Taj	ж (Q	TY) Culturable ID Species (Media)	
Asbestos Soil PLM	(Qual) PLM_(Quan) PLM/TEM_(Qual)	PLM/TEM(Qu	an) If field d	ata shee	ets are su	bmitted	, there	is no ne	ed to co	mplete I	bottom s	section.		Other (S	Specify_)((QTY	
*It is recommended that b	lank samples be submitted with all air and surface so SAMPLE INFORMATION	am i 27 2 			AN	ĮALYS	5ļS	, Q			N	A AŢRI	IX .	, <i>t</i> n	, a		CLIENT CONTACT	
CLIENT ID #	SAMPLE INFORMATION SAMPLE LOCATION/ ID	DATE/ TIME	VOL (L)/ Wipe Area	Ma	ភ្ញី	13	13	ថ្នី	15		1 3			TAPE /	SWAB	/	(LABORATORY STAFF ONLY)	
21-602	Parkinglot	12:16	15 L										1				ne: Contact:By:	
	L Fueld blank	N/	A															
	main office	12:31	75L															
-	careteria	12:38	75L										~			_		
5	gymnasium	12:45	75L										V			Date/Tin	ne: Contact:By:	
ja ka	room 144	12:54	75L										~					
	science m 152	1:03	75L										~					
8	room 322	1:15	15L														-	
9	room 336	1:26	15L				1						~			Date/Tin	ne: Contact:By:	
lo	room 307	1:33	75L										~					
4 11	computerlab	1:39	75L				4						/					_
	-																	
	Print Name			-		gnature						Date				me	Shipping Information	
Relinquished by:	Mikal Frater		mi	<u></u>	al	<u>Cr</u>	20	ter			21	2]			4.	sspm	UPS OfficePerson Other	
Received by:										_	- 4							
Relinquished by:	14		$+ \epsilon$	TA	\rightarrow					$+\tau$	27	121		+	65	<u> </u>	USPS Courrier	
Received for Lab by:				M.						V	101	IN		1 1	VEC	ハー		<u> </u>

Chain of Custody: Client: Address: Attention:	324880 ATI, Inc. 9220 Rumsey R Suite 100 Columbia, MD 2 Nate Burgei					Job Location:NJob Number:2	E Just Middl lot Provided 1-602 lot Provided	le School				Date Submitted: Person Submitting: Date Analyzed: Report Date:		02/24/2021 Nate Burgei 02/24/2021 02/25/2021		
AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location		324880-1 31569722 MG Air-O-Cell 150 Acceptable 1 Computer Lab 302				AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location	3 M A 1 A 2	24880-2 1569782 MG sir-O-Cell 50 kcceptable Dutdoors				AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location	32483 31563 MG Air-O 0 Acce _l 1 Blank	9715 -Cell otable		
	Raw Ct	Trav/Flds	A.S.	sp/m ³	%		Raw Ct	Trav/Flds	A.S.	sp/m ³	%		Raw Ct	Trav/Flds	A.S. sp/r	m ³ %
Altern	aria					Alternaria	1					Alternaria				
Ascosp	ores 8	23	26	208	42.1%	Ascospores	s 13	23	26	338	20%	Ascospores				
Basidiosp	ores 8	23	26	208	42.1%	Basidiospores	s 40	23	26	1040	61.5%	Basidiospores				
Bipolaris/Drechslera/H	elm.					Bipolaris/Drechslera/Helm.						Bipolaris/Drechslera/Helm.				
Chaetor	nium					Chaetomium	ı					Chaetomium				
Cladospor	rium					Cladosporium	1 4	23	26	104	6.2%	Cladosporium				
Curvu	laria					Curvularia	1					Curvularia				
Penicillium / Asperg	illus 3	23	26	78	15.8%	Penicillium / Aspergillus	3	23	26	78	4.6%	Penicillium / Aspergillus				
Smuts/Periconia/Myxomyc	etes					Smuts/Periconia/Myxomycetes	s 5	23	26	130	7.7%	Smuts/Periconia/Myxomycetes				
Stachybotrys/Memnon	iella					Stachybotrys/Memnoniella	1					Stachybotrys/Memnoniella				
♦ Uloclac	lium					Ulocladium	ı					Ulocladium				
Unkn	own					Unknown	ı					Unknown				
Hyphal Fragme	ents [*]					Hyphal Fragments*	*					Hyphal Fragments*				
Total Raw		-	Total	sp/m ³ :	494	Total Raw Ct		т	fotal s	sp/m ³ :	1690	Total Raw Ct:	0	-	Total sp/m	n ³ : 0
		nments		•			Comme						Comments nold spores ob	;		

ASTM D7391-09 Spore Trap Analysis Report

Chain of Custody:	324880	Job Name:	EE Just Middle School	Date Submitted:	02/24/2021
Client:	ATI, Inc.	Job Location:	Not Provided	Person Submitting:	Nate Burgei
Address:	9220 Rumsey Road	Job Number:	21-602	Date Analyzed:	02/24/2021
	Suite 100	P.O. Number:	Not Provided	Report Date:	02/25/2021
	Columbia, MD 21045				
Attention:	Nate Burgei				

Spore Comparison Guide

The criteria for these specifications are outlined, but not limited to those listed, below. Final specifications may differ from the listed criteria for certain samples. AMA Analytical Services, Inc. reserves the right to make changes to these criteria at any time without notice.

Normal ecology	Slightly above normal ecology	Moderately above normal ecology	Substantially above normal ecology

Stachybotrys / Memnoniella, and Chaetomium	Other Spores* (Control Present)	Other Spores* (No Control)
1-4 Spores: Yellow	< 10 Spores: Insignificant (no color)	< 10 Spores: Insignificant (no color)
5-9 Spores: Orange	<= Control's spore count: Green	10-20 Spores: Yellow
10+ Spores: Red	Between Control and 2x Control: Yellow	20-50 Spores: Orange
	Between 2x Control and 3x Control: Orange	50+ Spores: Red
	3x+ Control: Red	

*No evalutation is provided for the following spore types: Other, Other Colorless, and Unknown Fungi, and Misc

Interpretation of the data contained in this report is the sole responsibility of the client or the persons who conducted the field work. There are no federal or national standards for the number of fungal spores that may be present in the indoor environment. As a general rule and guideline that is widely accepted in the indoor air quality field, the numbers and types of spores that are present in the indoor environment should be comparable to those that are present outdoors at any given time. There will always be some mold spores present in "Normal" indoor environments. The purpose of sampling and counting spores is to help determine whether an abnormal condition exists within the indoor environment and if it does, to help pinpoint the area of contamination. Spore counts should not be used as the sole determining factor of mold contamination. There are many factors that can cause anomalies in the comparison of indoor and outdoor samples due to the dynamic nature of both of those environments.

This report is provided for informational and comparative purposes only and should not be relied upon for any other purpose. Sampling techniques, possible contaminants, unrepresentative samples and other similar or dissimilar factors may affect these results. With the statistical evaluation provided, as with all statistical comparisons and analyses, false-positive and false-negative results can and do occur. AMA Analytical Services, Inc. hereby disclaims any liability for any and all direct, indirect, punitive, incidental, special or consequential damages arising out of the use or interpretation of the data contained in, or any actions taken or omitted in reliance upon, this report.

ASTM D7391-09 Spore Trap Analysis Report

Chain of Custody:	324880	Job Name:	EE Just Middle School	Date Submitted:	02/24/2021
Client:	ATI, Inc.	Job Location:	Not Provided	Person Submitting:	Nate Burgei
Address:	9220 Rumsey Road	Job Number:	21-602	Date Analyzed:	02/24/2021
	Suite 100	P.O. Number:	Not Provided	Report Date:	02/25/2021
	Columbia, MD 21045				
Attention:	Nate Burgei				

General Comments, Disclaimers, and Footnotes

: Sample are analyzed following the instructions and guidelines outlined in ASTM 7391-09.
 Acceptable: The sample was collected and delivered to the our location without disturbing the material on the sampling media. Unacceptable: 1. The sample trace (TR) has been disturbed. 2. The sample was damaged or otherwise unsuitable for analysis. 0 = No particulate matter detected; 1= >nd-~5% Particulate Loading; 2 = ~5%-25% Particulate Loading; 3 = ~25%- 75% Particulate Loading; 4 = ~75%-90% Particulate Loading; 5 = >90% Particulate Loading
 Based on their small size and very few distinguishing characteristics, Aspergillus and Penicillium cannot be differentiated by non-viable sampling methods. There are other types of spores whose morphology is similar to Aspergillus and Penicillium and cannot be differentiated by non-viable sampling methods. Examples of these similar spores are Acremonium, Paecilomyces, Wallemia, Trichoderma, Scopulariopsis, and Gliocladium. Smuts, Periconia and Myxomycetes are three different types of genera that have similar morphological characteristics. Bipolaris/Dreschlera/Helm: Bipolaris / Dreschlera / Helminthosporium are three different types of genera that have smiliar morphological characteristics. Other Colorless represents all colorless spores that are non-distinctive and unidentifiable. 'Hyphal Fragments: A portion of the mycelium that becomes separated from the remainder of the thallus (vegetative body), each of which has the capacity to grow and form new individuals. Results for hyphal fragments are in fragments/m3 and are not incorporated in the total spore concentration. The droplet symbol () refers to water-intrusion indicator spores. These fungal spores, when found on indoor air samples, can be an indication of moisture sources and resultant fungal growth that may be problematic.
Analytical Sensitivity (A.S.): This is dependent on the volume of air collected, size of the trace, ocular diameter, and the amount of the trace that was analyzed. The value of "Present" indicated in the Raw Count column represents the presence of this spore type during the preliminary exam at 400x. The Raw Count converts to a whole number if the spore type is encountered again during the 600x-1,000x enumeration. The sp/m3concentration will be reported as less than the analytical sensitivity if "Present" is reported in the Raw Count. Results are reported to 3 significant figures. sp/m3: Spores per cubic meter. Uncertainty: for raw count in the range of 0-50 the SR is 0.375, 51-100 SR=0.333, 101-200 SR=0.257, >200 SR=0.245 All results are to be considered preliminary and subject to change unless signed by the Technical Director or Deputy. Analyst(s): Michael Greenberg

Technical Director Tristan Ward

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these Laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from us. Sample types, locations, and collection protocols are based upon the information provided by the persons submitting them and, unless collected by personnel of these Laboratories, we expressly disclaim any knowledge and liability for the accuracy and completeness of this information. Residual sample material will be discarded in accordance with the appropriate regulatory guidelines, unless otherwise requested by the client.

MOLD SPORE DESCRIPTIONS

Ascospores

Ascospores are spores formed inside an ascus (asci-plural) or sac-like cell which is contained inside a fruiting body called an ascocarp or an ascoma (ascomata-plural). An ascus typically contains a definite nuimber of ascospores, usually eight. Ascospores are unique in shape, size, and color as to the Genus/species they represent. These spores are specific to fungi classified as Ascomycetes. They are ubiquitous in nature. Many decay organic matter, others are plant or animal pathogens. They can grow indoors on damp materials. Release of ascospores are released by forcible ejection and dispersed by wind, water, animals and other agents. Health Effects: Depending on the Genera, Ascospores may be allergenic.

Basidiospores

Basidiospores are reproductive spores produced by a group of fungi called basidiomycetes. This group includes the mushrooms, shelf fungi and various other macrofungi. Basidipspores serve as the main air (wind) dispersal units for the fungi and their release is dependent upon moisture. The structure of the spore complex can develop in various manners resulting in different appearances. It is often found growing in soil, decaying plant debris, compost piles and fruit rot. Indoors, it can be found on water damaged building materials (chipboard /OSB, plywood, wallpaper, and glue) as well as on food items (dried foods, cheeses, fruits, herbs, spices, cereals). Health effects: Some basidiospores may produce toxins and can act as allergens. They have not been reported to be pathogens.

Cladosporium

Cladosporium is the most common indoor and outdoor mold. The spores are wind dispersed and are often extremely abundant in outdoor air. Many species are commonly found on living and dead plant material. Indoors, they may grow on surfaces with high moisture or high humidity levels such as damp window sills, poorly ventilated bathrooms and soiled refrigerators. It produces powdery or velvety olive-green to brown or black colonies. The conidia (spores) vary depending on the species and are formed in simple or branching chains with multi-attachment points. Health Effects: Cladosporium species are rarely pathogenic to humans, but have been reported to occassionally cause sinusitis and pulmonary infections as well as infections of the skin and toenails. The airborne spores are significant allergens, and in large amounts they may severely affect asthmatics and people with respiratory diseases.

Penicillium/Aspergillus Like

Penicillium and Aspergillus are ubiquitous, filamentous fungi that are found in soil, decaying plant debris, compost piles, and in the air. Indoors, spores are commonly found in house dust, in water-damaged buildings (wallpaper, wallpaper glue, decaying fabrics, moist chipboards, and behind paint) as well as fruit and grains. They are the most common fungal genera, worldwide. Both produce chains of spores that are small, round to oval, colorless or slightly pigmented, and smooth to rough walled. These spores are indistinguishable between the two as well as other genera, such as Gliocladium, Trichoderma, Paecilomyces, and Scopulariopsis. They differ as to their conidiophores or fruiting bodies. While, Aspergillus spores are produced from phialides supported on conidia heads or swollen vesicles, Penicillium spores are produced on finger-like projections. Depending on species, typical colonies of Aspergillus are initially white and later turn to either shades of green, yellow, orange, brown or black. Texture is usually velvety to cottony. Typical colonies of Penicillium, other than Penicillium marneffei (yeast-like at 37oC), grow rapidly, white in color at first, later becoming bluish green with white borders with velvety to powdery textures depending on species. Some species produce radial patterns. Health Effects: Both Aspergillus and Penicillium are potential allergens. Several species of Aspergillus (A. flavus and A. parasiticus) produce aflatoxins or natually occurring mycotoxins that are toxic and carcinogenic. These are found in contaminated foodstuff and are hazardous to consumers. Penicillium has only one known species that is pathogenic to humans (P. marneffei) that causes lethal systemic infection (Penicilliosis) in immunocompromised individuals.

Smuts/Periconia/Myxomycetes

Smuts, Periconia, and Myxomycetes spores are grouped together due to their similar round, brown morphology. Smuts are outdoor parasitic plant pathogens. They rarely grow indoors but may grow on host plants if appropriate conditions are present. They are parasitic plant pathogens. They can be found on cereal crops, grasses, flowing plants, weed, and other fungi. They can cause allergies. Periconia are found in soils, dead herbaceous stems and leaf spots, and grasses. They have wind dispersed dry spores. Their spores are abundant in the air but it is not known if they are allergenic. Myxomycetes are found on decaying logs, stumps and dead leaves. They have wind-dispersed dry spores and wet motile (amoebic phase) spores. During favorable conditions they move about like amoebae. They form dry airborne spores when conditions are unfavorable. They are rarely found indoors. Health Effects: They may cause Type 1 allergies (hay fever, asthma). No human infections have been reported.

AMA Analytical Services, Inc. Focused on Results www.amalab.com

 Focused on Results
 www.amalab.com

 AIHA-LAP (#100470) NVLAP (#101143-0) NY ELAP (10920)

 4475 Forbes Blvd. • Lanham, MD 20706

 (301) 459-2640 • (800) 346-0961 • Fax (301) 459-2643

⁹ CHAIN OF CUSTODY

(Please Refer To This Number For Inquires)

324880

Mailing/Billing Infor 1. Client Name:	mation:			Submitta		rmatio	n:	- \			11	c	1	1		
	ATT INC		m 01-	1. Job N			62	/	555	MIG	ble	<u>)</u>	n.00	1		
2. Address 1:	4221 Farbes		STE ZSO		ocation	1:										
	LANHAM, MD			3. Job#	:	21	-60	4	D .					_ P.C	D. #:	111 200 > 0
				4. Conta	act Pers	son:	-D	ate	BUN	Je (_ Ce	ll:	614-286-5919
5. Phone #:	Fax	#:		5. Colle	cted by	/:				<u> </u>				_ Ce	ll:	•
Reporting	Info (Results provided as soor	as technically	(feasible). If no 17	1/Keporun	g into i	is prov	ided,	AMA	will a	assign (aerau	uus oi	່ວ-ມະ	iy and	і еша	a to contacts on me.
· · · · · · · · · · · · · · · · · · ·	nust be pre-scheduled)	4 Hours		L BUSINESS	S HOUR	S							ı.		REPO	Q qti inc.com
4 Hours Late N		Same Day	3 Day		D)	Results					Emai	l:Y	<u>Jak</u>	bu	<u>g ei</u>	egati inc.com
 Immediate Date Du 24 Hours Time Di 	e: je:	🛛 Next Day	Date Due: 2	25/21		(Addition	nal fee i	may ap	ply)		Emai	12:	OUI	tue	iy@	atime.com
Comments:		🖵 2 Day	Date Duc.								Verba	als:			(-	
Asbestos Analysis			vi Bulk						Met	als Ana	alvsis					
*PCM Air - Please Indic			ELAP 198.4/Chat	field	(Q	TY)				🖵 РЬ Р	Paint C	hip 🕻] %b	y Wei	ght	(QTY) \Box mg/cm ² (QTY)
NIOSH 7400	(QTY)		NY State PLM/TH Residual Ash Vermiculite	.MM	$\frac{1}{Y}$	Y)				*Pb	Dust V	Wipe ((wipe (ype)(QTY)
Fiberglass	ate Filter Type:		• Vermiculite	TO)	Y)					🖵 *Pb 🖵 Pb S	Air Soil/So	164		_(QTY	:) (ΟΤΥ)	
AHERA NIOSH 7402	(QTY)	TEN	<u>M Dus</u> t*								ICLP_	<u> </u>		_(O]	Y)	
□ NIOSH 7402	(QTY)		Qual. (pres/abs) V Quan. (s/area) Va					n		🛛 Drin	nking V	Water	🗆 Pb_	(QTY) 🕻	Cu(QTY)
PLM Bulk)(QTY)	Quan. (s/area) Dus	t D6480-99		(Q'	TY)	.,		U Was	ste Wa		РЬ	_(Q1	(Y)	Cu(QTY)
EPA 600 – Visua	l Estimate (QTY)	Pos Stop TEN	M Water								alvoia					(QTY)
EPA Point Count	(QTY)		Qual. (pres/abs)_	(QTY)	0000			rui	Igai Ali Colle	ection	Appa	ratus f	or Spo	re Tran	os/Air Samples: BUCK BIOAIRE
□ NY State Friable	198.1(QTY) ELAP 198.6(QTY)		ELAP 198.2/EPA	100.2	<u> </u>	QTY)				Coll	ection	Medi	a	AI	1-0-	DS/Air Samples: BUCK BIOAIRE
• Other (specify	(QTY		All samples receiv			-				□ *Sp	ore-Tr	ap	₹_(Q	TY)	L S	Surface Vacuum Dust (QTY)
MISC			Lab use only (TEM)				Inerwis	se note	a.	□ *Su □ *Su						
Asbestos Soil ASTM D752 PLM/TEM (Quan)	1 PLM(Qual) PLM(Quan) PLM/TEM	(Qual)	If field data sheets are s				ate hotte	om cact]	O Other						
	ank samples be submitted with all air and surface	samples	IT field data sheets are s		NTA T 370					3.4	TRIX	-	,			COMMENTS /
	SAMPLE INFORMATION	D/	ATE/ VOL			M1	ا و ا	13	1~		5		1 29	1 2	1 B	/ SPECIAL INSTRUCTIONS
CLIENT ID #	SAMPLE LOCATION/ ID	T	IME Wipe	Area 😤	12	[=	3	ž	₹	<u> </u>	<u> </u>	<u>\$</u> \$8	<u> </u>	1 2	5	······································
31569722	Computer Lab 3	02 2/24	11:07- 150)[X	`		
31569782	OUTDOORS			TOL									X			
31569715		2hy	11:28 C)L									Х			
			110													
· · · · · · · · · · · · · · · · · · ·																
					+											
															-	
				²						·						
											_					
	-			,												
	Print Name			ignature				Date	c		1	Time				
Relinquished by:	Nate BURG	401	NA	~			ZI	lzч	171		1	1.58	4		🗆 UPS	Shippilige Cormation
	pull pull		1240-	<u>(</u>		-+	- 21	ind.	101					-	🗋 Fedf	Ex Drop Box
Received by:				ナ			Ľ	١M	ru			121	υ		🗆 USP	S Courrier

Appendix B: Instrument Calibration Records

Certificate of Calibration

() Buck™ BioAire Pump Calibration Rotameter () BuckTM BioSlide Pump Calibration Rotameter

Serial number: R15046

Date Calibrated: 11/12/2020 Calibration Due Date: 11/12/2021

Flow Calibration

This is to certify that the rotameter listed above has been calibrated using a Buck Primary calibrator listed below which is calibrated according to A.P. Buck, Inc. calibration procedure APB-1, Ver. 6.2 and is traceable to the National Institute of Standards & Technology (N.I.S.T). A.P. Buck guarantees the accuracy of the rotameter to be within \pm 5% of the actual flow rate.

AMBIENT CONDITIONS: Temperature $74\pm3^{\circ}$ F Relative Humidity $50\pm10\%$

Description	MFR.	Model	Serial #						
Primary Calibrator	A.P. Buck Inc.	M30B	□ A40020 □ A40021						
QA Approval By: Moron' Ment									

Information contained in this document should not be reproduced in any form without the written consent of A.P. Buck, Inc. It is for reference only and cannot be used as a form of endorsement by any private or governmental regulatory body.

> A.P. BUCK, INC. 7101 Presidents Drive. Suite 110 Orlando, FL 32809 Phone: 407-851-8602 Fax: 407-851-8910

CERTIFICATE OF CALIBRATION AND TESTING

TSI Incorporated, 500 Cardigan Road, Shoreview, MN 55126 USA Tel: 1-800-874-2811 1-651-490-2811 Fax: 1-651-490-3824 http://www.tsi.com

ENVIRONMENT C	ONDITIONS			Mo	0.01			7575-X	
TEMPERATURE		70.72 (21.5)	°F (°C)	Model				1313-7	
RELATIVE HUMIDIT	Y	39.0	%RH	Con		Numero	7	E75V1711006	
BAROMETRIC PRESS	SURE	29.15 (987.1)	inHg (hPa)	SERIAL NUMBER			1	7575X1711006	
🖾 AS LEFT 🗌 AS FOUND	- C A L	IBRATI		TOLERA JT OF TO	DLER	ANCE	RESULT	s –	
THERMO COUPL	E		Syst	EM PR	ESS	URE01-02		Unit: °F (°C)	
	1			11.11			te compos		
# STANDARD	MEASURED	ALLOW	ABLE RANGE	11	STA	NDARD	MEASURED	ALLOWABLE RANGE	
# STANDARD 1 70.9 (21.6)	MEASURED 70.8 (21.6)		ABLE RANGE 9 (20.5-22.7)		STA	NDARD	MEASURED	ALLOWABLE RANGE	
	70.8 (21.6)		9 (20.5-22.7)			URE01-02	MEASURED	ALLOWABLE RANGE Unit: inHg (hPa)	
1 70.9 (31.6)	70.8 (21.6)	68.9-72	9 (20.5-22.7)	EM PR			MEASURED		

TSI does hereby certify that the above described instrument conforms to the original manufacturer's specification (not applicable to As Found data) and has been calibrated using standards whose accuracies are traceable to the United States National Institute of Standards and Technology (NIST) or has been verified with respect to instrumentation whose accuracy is traceable to NIST, or is derived from accepted values of physical constants. TSI's calibration system is registered to ISO-9001:2015.

Measurement Variable Temperature Pressure

System ID E004626 E003982

Last Cal. Cal. Due 02-14-20 02-28-21 01-24-20 07-31-20

Measurement Variable Pressure DC Voltage

System ID	Last Cal.	Ca
E005254	10-10-19	10-
E003493	08-14-19	08-

Last Cal.	Cal. Due
10-10-19	10-31-20
08-14-19	08-31-20

ChaoVang

CALIBRATED

June 15, 2020

DATE

6	A.
V	C
	14

CERTIFICATE OF CALIBRATION AND TESTING

TSI Incorporated, 500 Cardigan Road, Shoreview, MN 55126 USA

Tel: 1-800-874-2811 1-651-490-2811 Fax: 1-651-490-3824 http://www.tsi.com

									and the second se
EN	VIRONMENT CO	NDITIONS				ODEL			7575-X
Ten	IPERATURE		70.68 (21.5) °F (°C)	MODEL				
Rel	ELATIVE HUMIDITY 38.0 %RH				SERIAL NUMBER 7575X171100				
BAROMETRIC PRESSURE		JRE	29.16 (987.5) inHg (hPa)		SERIAL NUMBER				
	□ As Left ⊠ As Found	– C a l 1	BRAT		TOLEI UT OF	foler	ANCE	RESULTS	<u>s –</u>
Ти	IERMO COUPLE			Syst	EM PI	RESS	URE01-02		Unit: °F (°C
#	STANDARD	MEASURED	ALLC	WABLE RANGE	#	STA	NDARD	MEASURED	ALLOWABLE RANGE
1	70.8 (21.6)	71.1 (21.7)	68.8~	72.8 (20.4~22.7)					
BA	ROMETRIC PR	ESSURE		Syst	EM P	RESS	URE01-02		Unit: inHg (hPa)
#	STANDARD	MEASURED	A	LLOWABLE RANG	E	#	STANDARD	MEASURED	ALLOWABLE RANGE
1	29.22 (989.5)	29.17 (987.8)	28.6	4~29.80 (969.9~100)9.1)				

TSI does hereby certify that the above described instrument conforms to the original manufacturer's specification (not applicable to As Found data) and has been calibrated using standards whose accuracies are traceable to the United States National Institute of Standards and Technology (NIST) or has been verified with respect to instrumentation whose accuracy is traceable to NIST, or is derived from accepted values of physical constants. TSI's calibration system is registered to ISO-9001;2015.

Measurement Variable Temperature Pressure

System ID E004626 E003982

Measurement Variable Pressure DC Voltage

System ID	Last C		
E005254	10-10-		
E003493	08-14-		

ast Cal.	Cal. Due			
0-10-19	10-31-20			
8-14-19	08-31-20			

Chao Vang Verified

June 15, 2020 DATE

Cal. Due 02-28-21

07-31-20

Last Cal. 02-14-20 01-24-20

EN	- Completion	NS			Мо	DEL			982
	NVIRONMENT CONDITIO	74	.0 (23.3) °F (°C)	INIC				P17100007
	ELATIVE HUMIDITY		34 %R		SEF	HAL NUMB	ER		P1/100001
	AROMETRIC PRESSURE	29.:	20 (988.8) inH	lg (hPa)		NICE			
F	AS LEFT					OLERANCE			
			BRATIO	A DO	EL	CATIO	N	RESUL	т s –
-		CALIE	RATIO	N VERI	FI	CA110			Unit: pp
	GAS CO2 AS FOUND				SYST #	EM G-101 Standard	T	MEASURED	ALLOWABLE RANGE
	# STANDARD ME.	ASURED	ALLOWABI		4	3015.3		* 2902.7	2924.9~3105.8 4904.3~5207.7
		0	0~: 449~		5	5056		* 4859.6	4904.3-5201.1
	2 499	458	952~						Unit: p
	3 1002	963			SVS	гем G-101			ALLOWABLE RANGE
Г	GAS CO AS FOUND		A	BLE RANGE	#	STANDARI	>	MEASURED	97.5~103.5
	# STANDARD MI	EASURED		~38.1	2	100.5		* 84.8	Unit: °F (
	35.1	* 29.5			SVS	TEM T-101			Unit: "F (ALLOWABLE RANGE
	TEMPERATURE AS	FOUND	DATE DAT	NGE # S	STANE	ARD		SURED	139.02~141.02 (59.45~60.5
	# STANDARD MEAS	URED AL	.1~33.1 (-0.5~	100		60.01) *	41.3	1 (60.73)	Unit: %
	1 32.1 (0.0) 32.8	(0.4) 31	.1~55.1 (0.0		SV	STEM H-102			ALLOWABLE RANG
	HUMIDITY AS FOU	JND		BLE RANGE	#	T a way		MEASURED	67.0~73.0
	# STANDARD N	IEASURED	ALLOWA)~13.0	4	70.0		67.1 * 85.88	87.01~93.01
	1 10.0	<u>10.4</u> 29.3		.0~33.0	5	90.01		* 85.00	
	2 30.0	48.5		.0~53.0		1		*/	ndicates Out-of-Tolerance Co
M	5								A Viendards and
ANAN JEER WAANAA J	5	s been verifie I's calibratio	Last (1) Last (1) 4095 04-06 4095 04-06 8 05-15 41 09-02 525 01-00 54467 08-11 557 02-1	Stered to ISO-9 Cal. Cal. Du 5-20 04-06-2 9-20 05-19-2 3-19 09-30-2 6-20 01-31-2 3-19 08-12-2	25 28 20 21 22 21 22	e original man able to the Un topse accuracy 015. <u>Measureme</u> 200 CO Air Flow Flow Flow 100 C4H8 Temperatu Humidity	<u>nt Va</u>	riable <u>Syster</u> 14988 T179 E003 E003	m ID Last Cal. Cal. Du 36 04-30-20 03-24-2 39 04-09-20 04-09-3 980 04-22-20 04-30-3 342 09-03-19 09-30-3 07339 03-24-20 03-24-4 0658 02-14-20 02-28-3 0658 02-14-20 02-34-3
	TSI does hereby certify th data) and has been calibr Technology (NIST) or ha of physical constants. TS. <u>Measurement Varia</u> 5000 CO2 N2 Flow Flow 2000 C4H8 Temperature	s been verifie I's calibratio <u>ble</u> <u>Svsten</u> 14A04 T-0603 E0033 E0035 EB002 E0106	Last (1) Last (1) 4095 04-06 4095 04-06 8 05-15 41 09-02 525 01-00 54467 08-11 557 02-1	Stered to ISO-9 Cal. Cal. Du 5-20 04-06-2 0-20 05-19-2 3-19 09-30-2 6-20 01-31-2 3-19 08-12-2 4-20 02-28-2	25 28 20 21 22 21 22	Measureme 200 CO Air Flow Flow 100 C4H8 Temperatu	<u>nt Va</u>	riable <u>Syste</u> 14983 T179 E003 E003 CC56 E010 E003	m 1D Last Cal. Cal. Du 36 04-30-20 03-24-2 39 04-09-20 04-09-2 980 04-22-20 04-30-3 342 09-03-19 09-30-0 07339 03-24-20 03-24-2 04-09-20 04-30-3 04-30-3 0558 02-14-20 02-28-3 0539 02-26-20 08-31-3 15, 2020 15, 2020
	TSI does hereby certify th data) and has been calibr Technology (NIST) or ha of physical constants. TS. <u>Measurement Varia</u> 5000 CO2 N2 Flow Flow 2000 C4H8 Temperature	s been verifie I's calibratio <u>ble</u> <u>Svsten</u> 14A04 T-0603 E0033 E0035 EB002 E0106	Last (1) Last (1) 4095 04-06 4095 04-06 8 05-15 41 09-02 525 01-00 54467 08-11 557 02-1	stered to ISO-9 Cal. Cal. Du 5-20 04-06-2 9-20 05-19-2 3-19 09-30-2 6-20 01-31-2 3-19 08-12-2 4-20 02-28-1 1-20 01-31-2	20007:2 25 28 20 21 22 21 22 21 22	Measureme 200 CO Air Flow Flow 100 C4H8 Temperatu	<u>nt Va</u>	riable <u>Syste</u> 14983 T179 E003 E003 CC56 E010 E003	m ID Last Cal. Cal. Dr. 36 04-30-20 03-24-3 39 04-09-20 04-09-9 980 04-22-20 04-30-3 342 09-03-19 09-30-3 77339 03-24-20 03-24-3 9658 02-14-20 02-36-3 9539 02-26-20 08-31-3

CERTIFICATE OF CALIBRATION AND TESTING

TSI Incorporated, 500 Cardigan Road, Shoreview, MN 55126 USA Tel: 1-800-874-2811 1-651-490-2811 Fax: 1-651-490-3824 http://www.tsi.com

Environment Conditions						ODEL		982		
Темрегатиге 70.41 (21.3) °F (°С)								P17100007		
RELATIVE HUMIDITY 50				%RH SERIAL NUMBER						
BAROMETRIC PRESSURE 29.15 (987.1) inHg (hPa)										
	As Left				TOLER	ANCE OLERANCE				
	LASTOUND	- CAL	IBRATI	ON VER	1 F I	CATIO	N RESUL	т s —		
						EM T-101		Unit: °F (°C		
	MPERATURE	MEASURED	ALLOWAR	LE RANGE .		TANDARD	MEASURED	ALLOWABLE RANGE		
#	STANDARD 22.1 (0.0)	31.9 (-0.1)	31.1~33.1		2 14	40.0 (60.0)	139.0~141.0 (59.5~60.6)			
					Syst	ЕМ Н-102		Unit: %R		
HI	MIDITY VERI		11100	ABLE RANGE	1#	STANDARD	MEASURED	ALLOWABLE RANGE		
-							The control of the second			
#	STANDARD	MEASURED			4	70.0	69.5	67.8~72.2		
#	10.0	9.0	7	8~12.2	4			67.8~72.2 87.8-92.2		
# 1 2	10.0 30.0	9.0 29.1	7	8~12.2		70.0	69.5	0112		
#	10.0	9.0	7	8~12.2	4	70.0 90.0	69.5	87.8-92.2		
# 1 2 3	10.0 30.0 50.0	9.0 29.1 49.6	7	8~12.2 2.8~32.2 7.8~52.2	4	70.0 90.0 TEM G-101	69.5 88.7	87.8-92.2 Unit: pp		
# 1 2 3	10.0 30.0 50.0 02 GAS VERIF	9.0 29.1 49.6	7	8~12.2	4 5 Syst	70.0 90.0 EM G-101 STANDARD	69.5 88.7 MEASURED	87.8-92.2 Unit: pp ALLOWABLE RANGE		
# 1 2 3 C	10.0 30.0 50.0	9.0 29.1 49.6 ICATION	7	8~12.2 2.8~32.2 7.8~52.2	4 5 SYS1 # 4	70.0 90.0 EM G-101 STANDARD 3016	69.5 88.7 MEASURED 3012	87.8~92.2 Unit: pp ALLOWABLE RANGE 2926~3107		
# 1 2 3 C # 1	10.0 30.0 50.0 O2 GAS VERIF STANOARD	9.0 29.1 49.6 ICATION MEASURED	7 27 47 ALLOW	8~12.2 2.8~32.2 7.8~52.2 ABLE RANGE	4 5 Syst	70.0 90.0 EM G-101 STANDARD	69.5 88.7 MEASURED	87.8-92.2 Unit: pp ALLOWABLE RANGE		
# 1 2 3 C	10.0 30.0 50.0 02 GAS VERIF STANDARD 0	9.0 29.1 49.6 ICATION MEASURED 0	7 27 47 ALLOW	8~12.2 2.8~32.2 2.8~52.2 ABLE RANGE 0~50	4 5 SYS1 # 4	70.0 90.0 EM G-101 STANDARD 3016	69.5 88.7 MEASURED 3012	87.8-92.2 Unit: pp ALLOWABLE RANGE 2926~3107 4904~5208		
# 1 2 3 C # 1 2 3	10.0 30.0 50.0 O2 GAS VERIF STANDARD 0 502 1005	9.0 29.1 49.6 ICATION MEASURED 0 502 1019	7 27 47 ALLOW	8~12.2 2.8~32.2 2.8~52.2 ABLE RANGE 0~50 52~552	4 5 Syst # 4 5	70.0 90.0 EM G-101 STANDARD 3016	69.5 88.7 MEASURED 3012	87.8~92.2 Unit: pp ALLOWABLE RANGE 2926~3107 4904~5208 Unit: pp		
# 1 2 3 C 4 1 2 3	10.0 30.0 50.0 O2 GAS VERIF STANDARD 0 502	9.0 29.1 49.6 ICATION MEASURED 0 502 1019	ALLOW	8~12.2 2.8~32.2 2.8~52.2 ABLE RANGE 0~50 52~552	4 5 Syst # 4 5	70.0 90.0 EM G-101 STANDARD 3016 5056	69.5 88.7 MEASURED 3012	87.8~92.2 Unit: pp ALLOWABLE RANGE 2926~3107 4904~5208		

TSI does hereby certify that the above described instrument conforms to the original manufacturer's specification (not applicable to As Found data) and has been calibrated using standards whose accuracies are traceable to the United States National Institute of Standards and Technology (NIST) or has been verified with respect to instrumentation whose accuracy is traceable to NIST, or is derived from accepted values of physical constants. TSI's calibration system is registered to ISO-9001:2015.

Measurement Variable Temperature Temperture 5000 CO2 N2 Flow Flow 2000 C4H8	<u>System ID</u> E010657 E010655 14A044095 T-0608 E003241 E003525 EB0054467	Last Cal. 02-14-20 01-21-20 04-06-29 05-19-20 09-03-13 01-06-20 08-13-19	Cal Due 02-28-21 01-31-21 04-06-25 05-19-28 09-30-20 01-31-21 08-12-22	Measurement Variable Temperature Humidity 200 CO Air How Flow 100 C4!18	Svstem 1D E010658 E003539 149886 T17939 E003980 E003342 CC507339	Last Cal. 02-14-20 02-26-20 04-30-20 04-09-20 04-09-20 04-22-20 09-03-19 03-24-20	Cal. Due 02-28-21 08-31-20 03-24-28 04-09-28 04-30-21 09-30-20 03-24-28
--	--	---	---	--	---	---	--

Chao Varia CALIBRATED

June 16, 2020

DATE