

March 2, 2021

Prince George's County Public Schools 13300 Old Marlboro Pike Upper Marlboro, Maryland 20772 Attention: Mr. Alex Baylor

RE: Indoor Air Quality Assessment, Glenridge Elementary School Purchase Order: 734977 ATI Project Number: 20-694

Dear Mr. Baylor:

Prince George's County Public Schools requested that ATI, Inc., conduct a proactive indoor air quality (IAQ) assessment at Glenridge Elementary School on December 3, 2020 and a follow-up assessment on February 27, 2021. The assessments' key findings are enclosed in the Executive Summary on page three, and the official laboratory reports for total fungal spore trap sampling are enclosed in Appendix A.

Thank you for the opportunity to provide Industrial Hygiene services for Prince George's County Public Schools. If you have any questions regarding this report, please contact us at (202) 643-4283.

Sincerely, ATI, INC.

Reviewed By:

mikal Frater

Mikal Frater Industrial Hygienist

Nate Burgei, CIH, CSP Certified Industrial Hygienist

Indoor Air Quality Assessment Report

Prince George's County Public Schools Glenridge Elementary School 7200 Gallatin Street Landover Hills, MD 20784

Prepared for:

Prince George's County Public Schools 13300 Old Marlboro Pike Upper Marlboro, Maryland 20772

March 2, 2021

Submitted by:

ATI Job # 20-694

Table of Contents

Tab	le of Contents	.1
1	Executive Summary	
2	Assessment Methods	. 1
3	Visual Observations	
4	Thermal Environmental Conditions for Human Occupancy	. 3
4	.1 Temperature	. 3
4	.2 Relative Humidity	. 4
4	.3 Carbon Dioxide	. 5
4	.4 Carbon Monoxide	. 6
5	Total Fungal Air Sampling Results	. 7
6	Summary of Findings	. 8

List of Tables

Table 1: Visual Observations and Sampling Locations	2
Table 2: Temperature	
Table 3: Relative Humidity	
Table 4: Carbon Dioxide	
Table 5: Carbon Monoxide	
Table 6: Aspergillus/Penicillium Concentration Comparison	

Appendices

Appendix A: Laboratory Reports and Chain of Custody

Appendix B: Instrument Calibration Records

Abbreviations and Acronyms

AHU	Air-Handling Unit
AIHA	American Industrial Hygiene Association
ASHRAE	American Society of Heating, Refrigerating and Air-Conditioning Engineers
ASTM	American Society for Testing and Materials
CO	Carbon Monoxide
CO ₂	Carbon Dioxide
EMLAP	Environmental Microbiology Laboratory Accreditation Program
HVAC	Heating, Ventilating, And Air-Conditioning
IAQ	Indoor Air Quality
NIST	National Institute for Standards and Technology
NVLAP	National Voluntary Laboratory Accreditation Program
RH	Relative Humidity
Rev.	Revision

Abbreviations involving scientific volume and measurements involving media or water sampling

Spores/m ³	Mold spores per cubic meter of air
LPM	Liters Per Minute
NTE	Not to exceed
°F	degree Fahrenheit
PPM	Parts Per Million

1 Executive Summary

ATI conducted a proactive Indoor Air Quality (IAQ) assessment on December 3, 2020, at Glenridge Elementary School, located at 7200 Gallatin Street, in Landover Hills, Maryland, and a follow-up assessment on February 27, 2021 in select rooms that had unusual results in the initial inspection.

The initial assessment on December 3, 2020 included a visual assessment of randomly selected classrooms and other frequently occupied spaces, such as the cafeteria/gym, the main office, and randomly selected classrooms, for potential IAQ contributors and pathways. The Main Office, Room 104, and Room 112 had unusual fungal spore concentrations during the initial assessment and were selected for a follow-up assessment after actions were taken to reduce the presence of mold and repair any water issues discovered. On February 27, 2021, select rooms were reassessed after unusual spore concentrations were present during the first assessment. Steps were taken between the two assessments to repair water issues and treat the area for fungal growth. As part of both assessments, ATI measured common IAQ comfort parameters, including temperature, relative humidity, carbon dioxide, and carbon monoxide. Also, ATI collected total fungal air samples on spore trap cassettes for microbiological analysis.

The following is a summary of the key findings from these assessments:

- One of the tested spaces had a temperature less than the ASHRAE recommended winter range of 68°F 75°F during the initial assessment. During the reassessment on February 27, one of the three tested spaces had a temperature less than the ASHRAE recommended winter range of 68°F - 75°F.
- The relative humidity in all tested spaces was less than the ASHRAE guidelines of less than or equal to 65% during the initial December assessment, and two of tested rooms had relative humidity less than 30%, which can cause occupant discomfort. All three reassessed spaces on February 27 had a relative humidity less than 65% but greater than 30%.
- 3. Carbon dioxide concentrations in all tested spaces were less than the ASHRAE limits for carbon dioxide, which were 1,148 and 1,041 parts per million (ppm) for the day of the December assessment and February reassessment, respectively.
- 4. Carbon monoxide concentrations were less than the IAQ meter's detection limit throughout the tested spaces.
- 5. The spore trap sampling results from the initial assessment suggested some level of indoor amplification in the Main Office, Room 104, and Room 112. Other tested spaced did not suggest noteworthy amplification.
- 6. The February 27, 2021 reassessment showed a favorable decrease in *Aspergillus/Penicillium*-like spores in all of the tested spaces, ranging from a 95% decrease to a 100% decrease. The *Aspergillus/Penicillium*-like spore concentration in Room 104, while significantly dropping by 95%, was still greater than 1,000 spores/m³. The *Cladosporium* spore concentrations in Room 112 also dropped 76% but remained greater than 1,000 spores/m³. ATI recommends a thorough cleaning of Rooms 112 and 104 using HEPA vacuums to clean all vertical and horizonal surfaces, wet wiping all non-porous vertical and horizontal surfaces and materials and running HEPA equipped air scrubbers for at least 24 48 hours.

2 Assessment Methods

Mikal Frater, Industrial Hygienist of ATI, Inc. conducted the initial visual assessment and air sampling on December 3, 2020. Sampled rooms were randomly selected and accounted for approximately 10% of classrooms or a minimum of five samples. Ms. Frater documented visual observations at the time she collected the air samples. Ms. Frater conducted a follow-up inspection on February 27, 2021 in The Main Office, Room 104, and Room 112 after the areas were treated for mold presence. ATI references the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) *Standard 62.1 – 2016* and ASHRAE *Standard 55 – 2017* when providing IAQ services to clients. ASHRAE is an industry leader on energy efficiency and indoor air quality.

All measurements and air samples were collected between three-six feet from floor elevation, which represents a typical adult breathing zone, and away from air-supply and return diffusers. Real-time direct readings for temperature, relative humidity, carbon dioxide (CO₂), and carbon monoxide (CO), were measured with a calibrated TSI Q-Trak 7575-X Meter and attached 982 Probe.

Total fungal air samples were collected with a field calibrated Buck BioAire High-Volume Sampling Pump on Zefon Air-O-Cell spore-trap cassettes at a flow rate of 15 liters per minute for five minutes, for a sample volume of 75 liters. AMA Analytical Services, Inc. of Lanham, MD analyzed the samples using direct microscopic examination per ASTM D7391, which spores both viable and non-viable mold spores and particulates, which combined yields total fungal results. AMA participates in the National Institute of Standards and Technology's (NIST) National Voluntary Laboratory Accreditation Program (NVLAP) for general laboratory performance and management, and the American Industrial Hygiene Association (AIHA) for Environmental Microbial Laboratory Accreditation Program (EMLAP). The AMA laboratory reports are included in Appendix A.

3 Visual Observations

Table 1 lists the areas, conditions, observations, and other pertinent details related to the initial and follow-up IAQ assessments. On both dates of sampling, few occupants were present in the school because of the COVID-19 global pandemic.

Sample Location	December 3, 2020 Observations
Outdoors – Parking Lot	 Cloudy skies Light foot and vehicle traffic observed Light winds, about 12mph NW
Main Office	 Three occupants at time of assessment Doors to corridor open at time of assessment Light foot traffic in and out of space Two air supplies and one return with light dust accumulation Space is approximately 320 ft.²
Room 200	 One occupant at time of assessment and door to hallway was open No signs of major water intrusion No stained ceiling tiles, area mostly clean with trace dust accumulation One air supplier in the form of a wall unit, one return with light dust accumulation Space is approximately 720 ft.²
Room 104	 One occupant at time of assessment, and door to hallway was open One air supplier in the form of a wall unit, four air returns Various light brown stains on ceiling tiles Space is approximately 880 ft.²
Gymnasium	Fans OFF at time of assessmentOne occupant at time of assessment
Room 112	 One air supplier in the form of a wall unit, one return Stained ceiling tiles towards back of room, in centralized location near whiteboard (similar to notes from previous assessment) One occupant at time of assessment Door to corridor open at time of assessment No visible mold

Table 1: Visual Observations and Sampling Locations

Sample Location	December 3, 2020 Observations			
	Space is approximately 880 ft. ²			
Room 223	 One occupant, and door to hallway was closed Moderate dust accumulation in this space Two air suppliers; one in the form of a wall unit, one air return Ceiling tiles and floors were clean Space is approximately 800 ft.² 			
Room 215	 One occupant at time of assessment Door to corridor open at time of assessment One air supplier in the form of a wall unit, off at time of sampling Space is approximately 800 ft.² 			
Sample Location	February 27, 2021 Reassessment Observations			
Outdoors	 Cloudy skies, light rain Parking lot was mostly empty with little to no foot traffic 			
Main Office	 Two occupants at time of assessment Door to corridor closed Doors to adjoining rooms open Central air off during assessment Trace dust accumulation on surfaces 			
Room 112	 Vents to air unit open, with trace dust accumulation Two occupants at time of assessment Door to corridor open Light brown stained ceiling tile observed near front of classroom 			
Room 104	 Door to corridor open AC unit and wall unit off at time of assessment Two occupants at time of assessment Trace dust accumulation on surfaces Light brown stained ceiling tile above bookshelf 			

4 Thermal Environmental Conditions for Human Occupancy

ASHRAE *Standard 55-2017, Thermal Environmental Conditions for Human Occupancy*, addresses thermal comfort in an office environment, which means that an employee wearing a normal amount of clothing feels neither too cold nor too warm. This standard discusses thermal comfort within the context of air temperature, humidity, and air movement and provides recommended ranges for temperature and humidity that are intended to satisfy 80% of occupants. The recommended ASHRAE ranges are referenced below by each comfort parameter.

4.1 Temperature

The ASHRAE standard establishes a winter comfort range of between 68°F and 75°F and a summer range of between 73°F and 79°F. The temperatures measured during the December 3, 2020 initial assessment and reassessment from February 27, 2021 are summarized in Table 2. As indicated by the data in the table, temperatures in the school on December

3 averaged between 64°F and 76°F, with two tested locations greater than the ASHRAE recommended winter range and one location less than the recommended range. ATI recommends increasing the temperature in the main office if the occupants express concerns of being too cold.

ATI reassessed select rooms that had unusual fungal spore concentrations on February 27, 2021, after remediation actions were completed. ATI also reassessed the temperature in the reassessed rooms. The average temperatures in the reassessed locations range between 62°F and 75°F, with one tested location measuring less than the ASHRAE recommended winter range.

		emperature				
Sample Location	12/03/2020 Initial Assessment Temperature in ∘F			ASHRAE Standard		
	Min	Мах	Average	۰F		
Outdoors	46	47	47	N/A		
		Indoors				
Main Office	62	65	64	68°F - 75°F		
Room 200	70	70	70	68°F - 75°F		
Room 104	72	72	72	68°F - 75°F		
Gymnasium	75	76	76	68°F - 75°F		
Room 112	76	76	76	68°F - 75°F		
Room 223	69	71	70	68°F - 75°F		
Room 215	72	72	72	68°F - 75°F		
	February	27, 2021 Reassess	ment			
	T	emperature in °F				
Outdoors	42	43	43	N/A		
Indoors						
Main Office	61	63	62	68°F - 75°F		
Room 112	74	75	75	68°F - 75°F		
Room 104	74	74	74	68°F - 75°F		

Table 2	2: Tem	perature
---------	--------	----------

4.2 *Relative Humidity*

Relative humidity is a key factor for mold growth. Mold has the potential of growing on suitable surfaces with humidity levels above 65%. ASHRAE *Standard 62.1-2016, Ventilation for Acceptable Indoor Air Quality,* recommends a maximum indoor relative humidity of 65% to prevent condensation of moisture on surfaces. Relative humidity less than 30% may result in drying of occupants' mucous membranes and skin. Relative humidity measurements for December 3, 2020 and February 27, 2021 are summarized in Table 3. As indicated by the data in the table, the average relative humidity ranged between 21% and 42% with all tested locations measuring less than the ASHRAE maximum recommendation of 65% relative humidity, and three of the tested locations also measuring less than 30% relative humidity.

ATI reassessed select rooms that had unusual fungal spore concentrations on February 27, 2021, after remediation actions were completed. ATI also reassessed the relative humidity in the space during the reassessment, and the average relative humidity ranged between 34% and 54% with all tested locations measuring less than the ASHRAE maximum recommendation of 65% relative humidity.

Sample Location	12/03/2020 Initial Assessment Relative Humidity (%RH)			ASHRAE Standard		
	Min	Мах	Average	(% RH)		
Outdoors	32	42	37	N/A		
		Indoors				
Main Office	35	38	37	≤ 65		
Room 200	37	37	37	≤ 65		
Room 104	31	32	32	≤ 65		
Gymnasium	25	26	26	≤ 65		
Room 112	21	21	21	≤ 65		
Room 223	23	26	25	≤ 65		
Room 215	42	42	42	≤ 65		
	February 2	27, 2021 Reassess	ment			
	Relati	ve Humidity (%RH)			
Outdoors	70	78	74	N/A		
Indoors						
Main Office	51	57	54	≤ 65		
Room 112	38	39	39	≤ 65		
Room 104	33	34	34	≤ 65		

Table 3: Relative Humidity

4.3 Carbon Dioxide

Carbon dioxide concentrations within an occupied building are a standard method used to gauge the efficiency of ventilation systems. Carbon dioxide is a by-product of human respiration and does not pose an acute health hazard alone. Elevated concentrations may suggest that insufficient fresh air is being supplied to an occupied space and/or that the ventilation system does not provide a sufficient rate of air exchange.

Research has indicated that buildings with adequately operating ventilation systems are able to remove odors generated by activities in an indoor office environment efficiently. ASHRAE *Standard 62.1-2016* states that comfort (odor) criteria with respect to human bioeffluents are likely to be satisfied if the ventilation can maintain indoor carbon dioxide concentrations less than 700 parts per million (ppm) greater than the outdoor air concentration. Typically, outdoor carbon dioxide concentrations range from 300 ppm to 450 ppm, with the higher range typically found in urban areas during peak rush hour.

Carbon dioxide concentrations for December 3, 2020 are summarized in Table 4. On the day of the assessment, the average outdoor carbon dioxide concentration was 448 ppm, which calculates to a maximum indoor concentration of 1,148 ppm (700 + 448). All tested locations indoors were less than the recommended maximum for the day of the assessment.

ATI reassessed select rooms that had unusual fungal spore concentrations on February 27, 2021 after remediation actions were completed. The carbon dioxide concentrations measured during the reassessment are included in Table 4. The average outdoor carbon dioxide concentration on February 27, 2021 was 341 ppm, which calculates to a maximum indoor concentration of 1,041 ppm (700 + 341). All tested locations indoors were less than the recommended maximum for the day of the reassessment.

Sample Location		/2020 Initial Asses ntration (parts per	ASHRAE Standard				
	Min	Max	Average	(ppm) NTE			
Outdoors	428	467	448	N/A			
		Indoors					
Main Office	505	565	535	< 1,148			
Room 200	394	396	395	< 1,148			
Room 104	387	395	391	< 1,148			
Gymnasium	392	438	415	< 1,148			
Room 112	408	418	413	< 1,148			
Room 223	405	405	405	< 1,148			
Room 215	421	439	430	< 1,148			
	February	27, 2021 Reassess	ment				
	Concentr	ation (parts per mi	llion)				
Outdoors	324	358	341	N/A			
Indoors							
Main Office	395	401	398	< 1,041			
Room 112	426	428	427	< 1,041			
Room 104	427	451	439	< 1,041			

Table 4: Carbon Dioxide

4.4 Carbon Monoxide

Carbon monoxide is a colorless and odorless gas produced by the incomplete combustion of carbon containing fuels. Oil, gasoline, diesel fuels, wood, coke, and coal are the major sources of carbon monoxide. ASHRAE recommends that carbon monoxide not exceed nine ppm indoors over an eight-hour time-weighted average. ATI measured carbon monoxide concentrations using a TSI Q-Trak model number 7575-X with an attached IAQ probe (model number 982). The instrument's carbon monoxide sensor has an error range of \pm 3% of the reading or three (3) ppm, whichever is greater. As indicated by the data in Table 5, carbon monoxide concentrations for December 3, 2020 were less than the Q-Trak's detection limit throughout the school.

ATI reassessed select rooms that had unusual fungal spore concentrations on February 27, 2021, after remediation actions were completed. The carbon monoxide concentrations measured during the reassessment are included in Table 5. The carbon monoxide concentrations from the reassessment were also less than the Q-Trak's limit of detection and less than the EPA/ASHRAE recommended maximum of 9 ppm.

Sample Location	12/03/2020 Initial Assessment Concentration (parts per million)			ASHRAE Standard		
	Min	Мах	Average	(ppm)		
Outdoors	< 3	< 3	< 3	N/A		
Indoors						
Main Office	< 3	< 3	< 3	< 9		
Room 200	< 3	< 3	< 3	< 9		
Room 104	< 3	< 3	< 3	< 9		
Gymnasium	< 3	< 3	< 3	< 9		
Room 112	< 3	< 3	< 3	< 9		

Table 5: Carbon Monoxide

INDOOR AIR QUALITY REPORT

Room 223	< 3	< 3	< 3	< 9		
Room 215	< 3	< 3	< 3	< 9		
February 27, 2021 Reassessment Concentration (parts per million)						
Outdoors	< 3	< 3	< 3	N/A		
Indoors						
Main Office	< 3	< 3	< 3	< 9		
Room 112	< 3	< 3	< 3	< 9		
Room 104	< 3	< 3	< 3	< 9		

5 Total Fungal Air Sampling Results

Mold is carried indoors through building entrances, open windows, loading docks, foot traffic into buildings, and the HVAC system. To thrive indoors, mold requires a food source, proper temperature and humidity to foster its growth.

The December 3, 2020 and February 27, 2021 mold assessments sampled air using spore trap cassettes in randomly selected classrooms and other areas throughout the facility. These cassettes collect both viable spores, those capable of producing more fungal colonies, and non-viable spores, which cannot reproduce. Based upon recognized industry practices, indoor mold concentrations are compared with those detected outdoors, which are also known as ambient or baseline samples.

In normal circumstances, the diversity of spores identified indoors and outdoors should be similar with some exceptions. The high concentration of one or two species of fungal spores identified indoors and the absence of the same species outdoors can indicate a moisture problem with the potential to degrade the air quality. Fungi species present indoors are typically found at levels ranging from approximately 10-50% of their levels in the outdoor air, reflecting the filtering by the building's HVAC system.

The results from December 3, 2020 suggested unusual mold spore concentrations in three locations: Main Office, Room 112, and Room 104. The total ambient, outdoor spore concentration was 1,404 spores/m³. Room 104 had the greatest total spore concentration of 36,062 spores/m³, with *Aspergillus/Penicillium*-like spores being the predominant spores present at 36,010 spores/m³. Room 112 and the Main Office had total spore concentrations of 8,892 spores/m³ and 4,836 spores/m³, respectively, with *Aspergillus/Penicillium*-like being the predominant spore type in each room. The *Cladosporium* concentration in Room 112 was 5,252 spores/m³, which was also greater than the outdoor concentration.

The fungal spore concentrations in the Main Office, Room 104 and Room 112 are greater than the typical occupied space and suggest at least some level of mold amplification indoors. ATI recommended evaluating these rooms and the surrounding areas to try and identify water sources, abate any mold issues and clean the area before retesting the space.

The Main Office, Room 112, and Room 104 were reassessed on February 27, 2021 after the initial assessment indicated the unusual presence of airborne mold spores. The total ambient, outdoor spore concentration was 4,293 spores/m³, with most of the spore types identified as ascospores and no detectable presence of *Aspergillus/Penicillium*-like spores, or *Cladosporium*. Room 104 had the greatest total spore concentration of 1,855 spores/m³, with *Aspergillus/Penicillium*-like spores being the predominant spores present at 1,749 spores/m³. Room 112 and the Main Office had total spore concentrations of 1,802 spores/m³ and 371 spores/m³, respectively. The *Cladosporium* concentration in Room 112 was 1,272 spores/m³, which was also greater than the outdoor concentration.

While there was a significant reduction in airborne mold spores in Rooms 104 and 112, Room 112 had *Cladosporium* concentrations greater than 1,000 spores/m³ and Room 104 had an *Aspergillus/Penicillium*-like spore concentration greater than 1,000 spores/m³. It is possible that the measured spore concentrations in the spaces on February 27 were residual spores due to insufficient cleaning; therefore, ATI recommends using HEPA vacuums to clean all vertical and horizontal surfaces, wet

wiping all non-porous vertical and horizontal surfaces and materials and running HEPA equipped air scrubbers for at least 24 - 48 hours.

Sample Location	December 3, 2020 Concentrations	February 27, 2021 Concentrations	% Change
Main Office	4,576	212	-95%
Room 112*	2,860	None Detected	-100%
Room 104	36,010	1,749	-95%

 Table 6: Aspergillus/Penicillium Concentration Comparison

*Room 112 also had a *Cladosporium* concentration of 5,252 spores/m3 during the initial assessment and a concentration of 1,272 spores/m3 during the follow-up assessment, which is a drop of 76%.

The official laboratory reports with spore trap samples collected on December 3, 2020 and February 27, 2021 are presented in Appendix A.

6 Summary of Findings

- One of the tested spaces had a temperature less than the ASHRAE recommended winter range of 68°F 75°F during the initial assessment. During the reassessment on February 27, one of the three tested spaces had a temperature less than the ASHRAE recommended winter range of 68°F - 75°F.
- The relative humidity in all tested spaces was less than the ASHRAE guidelines of less than or equal to 65% during the initial December assessment, and two of tested rooms had relative humidity less than 30%, which can cause occupant discomfort. All three reassessed spaces on February 27 had a relative humidity less than 65% but greater than 30%.
- 3. Carbon dioxide concentrations in all tested spaces were less than the ASHRAE limits for carbon dioxide, which were 1,148 and 1,041 parts per million (ppm) for the day of the December assessment and February reassessment, respectively.
- 4. Carbon monoxide concentrations were less than the IAQ meter's detection limit throughout the tested spaces.
- 5. The spore trap sampling results from the initial assessment suggested some level of indoor amplification in the Main Office, Room 104, and Room 112. Other tested spaced did not suggest noteworthy amplification.
- 6. The February 27, 2021 reassessment showed a favorable decrease in *Aspergillus/Penicillium*-like spores in all of the tested spaces, ranging from a 95% decrease to a 100% decrease. The *Aspergillus/Penicillium*-like spore concentration in Room 104, while significantly dropping by 95%, was still greater than 1,000 spores/m³. The *Cladosporium* spore concentrations in Room 112 also dropped 76% but remained greater than 1,000 spores/m³. ATI recommends a thorough cleaning of Rooms 112 and 104 using HEPA vacuums to clean all vertical and horizonal surfaces, wet wiping all non-porous vertical and horizontal surfaces and materials and running HEPA equipped air scrubbers for at least 24 48 hours.

We appreciate the opportunity to provide these IAQ testing services for you. If you have any questions, please contact us at (202) 643-4283.

Best, ATI, INC.

mikal Frater

Mikal Frater Industrial Hygienist Appendix A: Laboratory Report and Chain of Custody

Chain of Custody: Client: Address: Attention:	624357 ATI, Inc. 9220 Rumsey Re Suite 100 Columbia, MD 2 Courtney McCall	1045				Job Location:HJob Number:2	Glenridge Elemer Hyattsville, MD 10-694 Jot Provided	ntary School I	AQ	Date Submitted: Person Submitting: Date Analyzed: Report Date:		12/03/20 Mikal Fr 12/07/20 12/08/20	ater)20		
AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location		624357-1 20-694-1 CD Air-O-Cell 75 Acceptable 2 Outdoors - Parking	g Lot			AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location	0	94-2		AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location	20 CI Aii 75 Ac 2	r-O-Cell			
	Raw Ct	Trav/Flds	A.S.	sp/m ³	%		Raw Ct	Trav/Flds	A.S. sp/m ³ %		Raw Ct	Trav/Flds	A.S.	sp/m ³	%
Alterna	aria					Alternaria	a			Alternaria					
Ascospo	ores 6	15	52	312	22.2%	Ascospores	5			Ascospores	2	15	52	104	2.2%
Basidiospo	ores 11	15	52	572	40.7%	Basidiospores	6			Basidiospores	1	15	52	52	1.1%
Bipolaris/Drechslera/He	elm.					Bipolaris/Drechslera/Helm				Bipolaris/Drechslera/Helm.					
Chaetom	lium					Chaetomiun	ı			Chaetomium					
Cladospor	rium Present	15	52	<52		Cladosporiun	ı			Cladosporium	1	15	52	52	1.1%
Curvula	aria					Curvularia	a			Curvularia					
Penicillium / Aspergi	illus 8	15	52	416	29.6%	Penicillium / Aspergillus	3			Penicillium / Aspergillus	88	15	52	4576	94.6%
Smuts/Periconia/Myxomyce	etes 2	15	52	104	7.4%	Smuts/Periconia/Myxomycetes	6			Smuts/Periconia/Myxomycetes					
Stachybotrys/Memnoni	iella					Stachybotrys/Memnoniella	a			Stachybotrys/Memnoniella					
Uloclad	lium					Ulocladium	ı			Ulocladium					
Unkno	own					Unknowr	ı			Unknown					
То	rula					Torula	a			Torula	1	15	52	52	1.1%
Pithomy	/ces					Pithomyces	S			Pithomyces					
	. •														
Hyphal Fragme				, ,	4.40.4	Hyphal Fragments			-	Hyphal Fragments*	00			, 2	4000
Total Raw		ments	fotal :	sp/m³:	1404	Total Raw Ct	Comments Mold Spores O	3	Total sp/m ³ : 0	Total Raw Ct:	93 Comme		lotal s	;p/m³:	4836

Chain of Custody: Client: Address: Attention:	624357 ATI, Inc. 9220 Rumsey R Suite 100 Columbia, MD 2 Courtney McCal	1045				Job Location:HyJob Number:20	lenridge Ele yattsville, MI)-694 ot Provided	mentary Sch D	nool IAC	Q		Date Submitted: Person Submitting: Date Analyzed: Report Date:		12/03/2020 Mikal Frate 12/07/2020 12/08/2020	er D		
AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location		624357-4 20-694-4 CD Air-O-Cell 75 Acceptable 1 Room 200				AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location	20 C A 75 A 2	cceptable				AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location	20-6 CD Air-1 75 Acc 1	357-6 394-6 D-Cell eptable nnasium			
	Raw Ct	Trav/Flds	A.S.	sp/m ³	%		Raw Ct	Trav/Flds	A.S.	sp/m ³	%		Raw Ct	Trav/Flds	A.S.	sp/m ³	%
Alterr	naria					Alternaria						Alternaria					
Ascosp	oores 1	15	52	52	33.3%	Ascospores						Ascospores	4	15	52	208	40%
Basidiosp	oores 1	15	52	52	33.3%	Basidiospores						Basidiospores	5	15	52	260	50%
Bipolaris/Drechslera/H	lelm.					Bipolaris/Drechslera/Helm.						Bipolaris/Drechslera/Helm.					
Chaeton	nium					Chaetomium						Chaetomium					
Cladospo	prium					Cladosporium						Cladosporium					
Curvu	ılaria					Curvularia						Curvularia					
Penicillium / Asperg	gillus 1	15	52	52	33.3%	Penicillium / Aspergillus	277	6	130	36010	99.6%	Penicillium / Aspergillus	1	15	52	52	10%
Smuts/Periconia/Myxomyc	cetes					Smuts/Periconia/Myxomycetes	1	15	52	52	0.4%	Smuts/Periconia/Myxomycetes					
Stachybotrys/Memnor	niella					Stachybotrys/Memnoniella						Stachybotrys/Memnoniella					
♦ Uloclad	dium					Ulocladium						llocladium					
Unkn	nown					Unknown						Unknown					
Тс	orula					Torula						Torula					
Pithom	yces					Pithomyces	Present	15	52	<52		Pithomyces					
Hyphal Fragme	ents*					Hyphal Fragments*						Hyphal Fragments*					
Total Raw			Total s	sp/m ³ :	156	Total Raw Ct:	278		Total	sp/m³:	36062	Total Raw Ct:	10	1	Fotal s	sp/m ³ :	520
	Com	iments ght Trace		-			Comme			•			Commen			<u>.</u>	

Chain of Custody: Client: Address: Attention:	Suite 100	TI, Inc. 220 Rumsey Road uite 100 olumbia, MD 21045 ourtney McCall				Job Location:Hyattsville, MDFJob Number:20-694E						Date Submitted:12/03/2020Person Submitting:Mikal FraterDate Analyzed:12/07/2020Report Date:12/08/2020					
AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location		624357-7 20-694-7 CD Air-O-Cell 75 Acceptable 2 Room 112				AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location	20 CI Ai 75 Ac 1	r-O-Cell				AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location	20 CE Ain 75 Ac 1	-O-Cell			
	Raw Ct	Trav/Flds	A.S.	sp/m ³	%		Raw Ct	Trav/Flds	A.S.	sp/m ³	%		Raw Ct	Trav/Flds	A.S.	sp/m ³	%
Altern	naria					Alternaria						Alternaria					
Ascosp	ores 4	15	52	208	2.3%	Ascospores	2	15	52	104	28.6%	Ascospores	2	15	52	104	9.5%
Basidiospo	ores 11	15	52	572	6.4%	Basidiospores	: 3	15	52	156	42.9%	Basidiospores	1	15	52	52	4.8%
Bipolaris/Drechslera/H	lelm.					Bipolaris/Drechslera/Helm.						Bipolaris/Drechslera/Helm.					
Chaetom	nium					Chaetomium						Chaetomium					
Cladospor	rium 101	15	52	5252	59.1%	Cladosporium	I					Cladosporium					
Curvu	Ilaria					Curvularia						Curvularia					
Penicillium / Asperg	gillus 55	15	52	2860	32.2%	Penicillium / Aspergillus	2	15	52	104	28.6%	Penicillium / Aspergillus	18	15	52	936	85.7%
Smuts/Periconia/Myxomyce	etes					Smuts/Periconia/Myxomycetes	;					Smuts/Periconia/Myxomycetes					
Stachybotrys/Memnon	niella					Stachybotrys/Memnoniella	ι					Stachybotrys/Memnoniella					
≜ Uloclac	dium					Ulocladium						Ulocladium					
Unkn	iown					Unknown						Unknown					
To	orula					Torula	L					Torula					
Pithomy	yces					Pithomyces	;					Pithomyces					
Hyphal Fragme	ents*					Hyphal Fragments [*]	•					Hyphal Fragments*					
Total Raw	Ct: 171		Total	sp/m ³ :	8892	Total Raw Ct:	: 7	1	Fotal s	sp/m ³ :	364	Total Raw Ct:	21	1	lotal s	p/m ³ :	1092
	Con	nments					Comme Very Light						Comme	nts			

ASTM D7391-09 Spore Trap Analysis Report

Chain of Custody:	624357	Job Name:	Glenridge Elementary School IAQ	Date Submitted:	12/03/2020
Client:	ATI, Inc.	Job Location:	Hyattsville, MD	Person Submitting:	Mikal Frater
Address:	9220 Rumsey Road	Job Number:	20-694	Date Analyzed:	12/07/2020
	Suite 100	P.O. Number:	Not Provided	Report Date:	12/08/2020
	Columbia, MD 21045				
Attention:	Courtney McCall				

Spore Comparison Guide

The criteria for these specifications are outlined, but not limited to those listed, below. Final specifications may differ from the listed criteria for certain samples. AMA Analytical Services, Inc. reserves the right to make changes to these criteria at any time without notice.

Normal ecology	Slightly above normal ecology	Moderately above normal ecology	Substantially above normal ecology	

Stachybotrys / Memnoniella, and Chaetomium	Other Spores* (Control Present)	Other Spores* (No Control)
1-4 Spores: Yellow	< 10 Spores: Insignificant (no color)	< 10 Spores: Insignificant (no color)
5-9 Spores: Orange	<= Control's spore count: Green	10-20 Spores: Yellow
10+ Spores: Red	Between Control and 2x Control: Yellow	20-50 Spores: Orange
	Between 2x Control and 3x Control: Orange	50+ Spores: Red
	3x+ Control: Red	

*No evalutation is provided for the following spore types: Other, Other Colorless, and Unknown Fungi, and Misc

Interpretation of the data contained in this report is the sole responsibility of the client or the persons who conducted the field work. There are no federal or national standards for the number of fungal spores that may be present in the indoor environment. As a general rule and guideline that is widely accepted in the indoor air quality field, the numbers and types of spores that are present in the indoor environment should be comparable to those that are present outdoors at any given time. There will always be some mold spores present in "Normal" indoor environments. The purpose of sampling and counting spores is to help determine whether an abnormal condition exists within the indoor environment and if it does, to help pinpoint the area of contamination. Spore counts should not be used as the sole determining factor of mold contamination. There are many factors that can cause anomalies in the comparison of indoor and outdoor samples due to the dynamic nature of both of those environments.

This report is provided for informational and comparative purposes only and should not be relied upon for any other purpose. Sampling techniques, possible contaminants, unrepresentative samples and other similar or dissimilar factors may affect these results. With the statistical evaluation provided, as with all statistical comparisons and analyses, false-positive and false-negative results can and do occur. AMA Analytical Services, Inc. hereby disclaims any liability for any and all direct, indirect, punitive, incidental, special or consequential damages arising out of the use or interpretation of the data contained in, or any actions taken or omitted in reliance upon, this report.

ASTM D7391-09 Spore Trap Analysis Report

Chain of Custody:	624357	Job Name:	Glenridge Elementary School IAQ	Date Submitted:	12/03/2020
Client:	ATI, Inc.	Job Location:	Hyattsville, MD	Person Submitting:	Mikal Frater
Address:	9220 Rumsey Road	Job Number:	20-694	Date Analyzed:	12/07/2020
	Suite 100	P.O. Number:	Not Provided	Report Date:	12/08/2020
	Columbia, MD 21045				
Attention:	Courtney McCall				

General Comments, Disclaimers, and Footnotes

 Acceptable: The sample was collected and delivered to the our location without disturbing the material on the sampling media. Unacceptable: 1. The sample trace (TR) has been disturbed. 2. The sample was damaged or otherwise unsuitable for analysis. 0 = No particulate matter detected; 1= >nd-~5% Particulate Loading; 2 = ~5%-25% Particulate Loading; 3 = ~25%-75% Particulate Loading; 4 = ~75%-90% Particulate Loading; 5 = >90% Particulate Loading 	
morphology is similar to Aspergillus and Penicillium and cannot be differentiated by non-viable sampling methods. Examples of these similar spores are Acremonium, Paecilomyces, Wallen Trichoderma, Scopulariopsis, and Gliocladium. Smuts, Periconia and Myxomycetes are three different types of genera that have similar morphological characteristics. Bipolaris/Dreschlera/Helm: Bipolaris / Dreschlera / Helminthosporium are three different types of genera that have smiliar morphological characteristics. Other Colorless represents all colorless spores that are non-distinctive and unidentifiable. *Hyphal Fragments: A portion of the mycelium that becomes separated from the remainder of the thallus (vegetative body), each of which has the capacity to grow and form new individuals. Results for hyphal fragments are in fragments/m3 and are not incorporated in the total spore concentration.	nia,
Analytical Sensitivity (A.S.): This is dependent on the volume of air collected, size of the trace, ocular diameter, and the amount of the trace that was analyzed. The value of "Present" indicated in the Raw Count column represents the presence of this spore type during the preliminary exam at 400x. The Raw Count converts to a whole number if the type is encountered again during the 600x-1,000x enumeration. The sp/m3concentration will be reported as less than the analytical sensitivity if "Present" is reported in the Raw Count. Results are reported to 3 significant figures. sp/m3: Spores per cubic meter. Uncertainty: for raw count in the range of 0-50 the SR is 0.375, 51-100 SR=0.333, 101-200 SR=0.257, >200 SR=0.245 All results are to be considered preliminary and subject to change unless signed by the Technical Director or Deputy. Analyst(s): Christopher Dell Technical Director	spore
	Smuts, Periconia and Myxomycetes are three different types of genera that have similar morphological characteristics. Bipolaris/Dreschlera/Helm: Bipolaris / Dreschlera / Helminthosporium are three different types of genera that have smiliar morphological characteristics. Other Colorless represents all colorless spores that are non-distinctive and unidentifiable. [*] Hyphal Fragments: A portion of the mycelium that becomes separated from the remainder of the thallus (vegetative body), each of which has the capacity to grow and form new individuals. Results for hyphal fragments are in fragments/m3 and are not incorporated in the total spore concentration. The droplet symbol (•) refers to water-intrusion indicator spores. These fungal spores, when found on indoor air samples, can be an indication of moisture sources and resultant fungal grow may be problematic. Analytical Sensitivity (A.S.): This is dependent on the volume of air collected, size of the trace, ocular diameter, and the amount of the trace that was analyzed. The value of "Present" indicated in the Raw Count column represents the presence of this spore type during the preliminary exam at 400x. The Raw Count converts to a whole number if the type is encountered again during the 600x-1,000x enumeration. The sp/m3concentration will be reported as less than the analytical sensitivity if "Present" is reported in the Raw Count. Results are reported to 3 significant figures. sp/m3: Spores per cubic meter. Uncertainty: for raw count in the range of 0-50 the SR is 0.375, 51-100 SR=0.257, >200 SR=0.245 All results are to be considered preliminary and subject to change unless signed by the Technical Director or Deputy. Analyst(s) : Christopher Dell

Technical Director Tristan Ward

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these Laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from us. Sample types, locations, and collection protocols are based upon the information provided by the persons submitting them and, unless collected by personnel of these Laboratories, we expressly disclaim any knowledge and liability for the accuracy and completeness of this information. Residual sample material will be discarded in accordance with the appropriate regulatory guidelines, unless otherwise requested by the client.

MOLD SPORE DESCRIPTIONS

Ascospores

Ascospores are spores formed inside an ascus (asci-plural) or sac-like cell which is contained inside a fruiting body called an ascocarp or an ascoma (ascomata-plural). An ascus typically contains a definite nuimber of ascospores, usually eight. Ascospores are unique in shape, size, and color as to the Genus/species they represent. These spores are specific to fungi classified as Ascomycetes. They are ubiquitous in nature. Many decay organic matter, others are plant or animal pathogens. They can grow indoors on damp materials. Release of ascospores are released by forcible ejection and dispersed by wind, water, animals and other agents. Health Effects: Depending on the Genera, Ascospores may be allergenic.

Basidiospores

Basidiospores are reproductive spores produced by a group of fungi called basidiomycetes. This group includes the mushrooms, shelf fungi and various other macrofungi. Basidipspores serve as the main air (wind) dispersal units for the fungi and their release is dependent upon moisture. The structure of the spore complex can develop in various manners resulting in different appearances. It is often found growing in soil, decaying plant debris, compost piles and fruit rot. Indoors, it can be found on water damaged building materials (chipboard /OSB, plywood, wallpaper, and glue) as well as on food items (dried foods, cheeses, fruits, herbs, spices, cereals). Health effects: Some basidiospores may produce toxins and can act as allergens. They have not been reported to be pathogens.

Cladosporium

Cladosporium is the most common indoor and outdoor mold. The spores are wind dispersed and are often extremely abundant in outdoor air. Many species are commonly found on living and dead plant material. Indoors, they may grow on surfaces with high moisture or high humidity levels such as damp window sills, poorly ventilated bathrooms and soiled refrigerators. It produces powdery or velvety olive-green to brown or black colonies. The conidia (spores) vary depending on the species and are formed in simple or branching chains with multi-attachment points. Health Effects: Cladosporium species are rarely pathogenic to humans, but have been reported to occassionally cause sinusitis and pulmonary infections as well as infections of the skin and toenails. The airborne spores are significant allergens, and in large amounts they may severely affect asthmatics and people with respiratory diseases.

Penicillium/Aspergillus Like

Penicillium and Aspergillus are ubiquitous, filamentous fungi that are found in soil, decaying plant debris, compost piles, and in the air. Indoors, spores are commonly found in house dust, in water-damaged buildings (wallpaper, wallpaper glue, decaying fabrics, moist chipboards, and behind paint) as well as fruit and grains. They are the most common fungal genera, worldwide. Both produce chains of spores that are small, round to oval, colorless or slightly pigmented, and smooth to rough walled. These spores are indistinguishable between the two as well as other genera, such as Gliocladium, Trichoderma, Paecilomyces, and Scopulariopsis. They differ as to their conidiophores or fruiting bodies. While, Aspergillus spores are produced from phialides supported on conidia heads or swollen vesicles, Penicillium spores are produced on finger-like projections. Depending on species, typical colonies of Aspergillus are initially white and later turn to either shades of green, yellow, orange, brown or black. Texture is usually velvety to cottony. Typical colonies of Penicillium, other than Penicillium marneffei (yeast-like at 37oC), grow rapidly, white in color at first, later becoming bluish green with white borders with velvety to powdery textures depending on species. Some species produce radial patterns. Health Effects: Both Aspergillus and Penicillium are potential allergens. Several species of Aspergillus (A. flavus and A. parasiticus) produce aflatoxins or natually occurring mycotoxins that are toxic and carcinogenic. These are found in contaminated foodstuff and are hazardous to consumers. Penicillium has only one known species that is pathogenic to humans (P. marneffei) that causes lethal systemic infection (Penicilliosis) in immunocompromised individuals.

Pithomyces

Pithomyces is a cosmopolitan, dark-walled fungus often found growing outside in soil, decaying leaves, and grasses. It is rarely found growing indoors, but will grow on paper given the right conditions. Colonies grow rapidly, cottony in texture with light to dark brownish black surface color. Spores are single, oval yellow to dark brown, multi-celled, and usually rough. One identification feature of the spores is the resemblance to barrels. Another identifying character is beak-like structures on young spores. Spores of Pithomyces chartarum are most common and are identified by distinctive tranverse septa. This species has been linked to facial eczema in sheep. Health Effects: It is a potential but not well-studied allergen or human pathogen.

Smuts/Periconia/Myxomycetes

Smuts, Periconia, and Myxomycetes spores are grouped together due to their similar round, brown morphology. Smuts are outdoor parasitic plant pathogens. They rarely grow indoors but may grow on host plants if appropriate conditions are present. They are parasitic plant pathogens. They can be found on cereal crops, grasses, flowing plants, weed, and other fungi. They can cause allergies. Periconia are found in soils, dead herbaceous stems and leaf spots, and grasses. They have wind dispersed dry spores. Their spores are abundant in the air but it is not known if they are allergenic. Myxomycetes are found on decaying logs, stumps and dead leaves. They have wind-dispersed dry spores and wet motile (amoebic phase) spores. During favorable conditions they move about like amoebae. They form dry airborne spores when conditions are unfavorable. They are rarely found indoors. Health Effects: They may cause Type 1 allergies (hay fever, asthma). No human infections have been reported.

Torula

Torula is a cosmopolitan, dark-walled fungus often found growing outside in soil, dead herbaceous stems, wood, grasses, and seeds. It can grow indoors on cellulose containing materials. It is frequently found in temperate regions. Torula spores are colored in shades of brown, from pale brown to reddish brown. Spores are formed in simple or branched chains, one to several cells long that are often detached. A cup-like indentation at the point of detachment is characteristic of these spores. Health Effects: Torula is an allergen, which may cause hay fever and asthma. It has not been reported to be pathogenic to humans or produce toxins.

AIHA-LAP (#1 4475 Forbes Bly	WIICOI SERVICES, INC. its www.amalab.com 00470) NVLAP (#101143-0) N vd. • Lanham, MD 20706 • (800) 346-0961 • Fax (301) 4	NY ELAP (10920) 459-2643	CHAI	N OF	CUS	STO	DY			Please Re umber F			624	357
Mailing/Billing Infor 1. Client Name: AT	1 100				al Informa			-						
2 Address 1: 42. 7	LI Forbes Blvd			_ 1. Job N	lame:				PQ					
3. Address 2: Sut	12.250			_ 2. Job I	ocation:		sville	MD			1012.020			
	ham, MP 2070	1.		_ 3. JOD #	: <u>20 - (</u> act Person:	NAile	1 Gra	-					A 200 A	
5. Phone #:	Fa	, #·			cted by:	Aival	Erat	04			Cell	200	18)702-86	2
Reporting I	Info (Results provided as soon	n as technically fea	sible). If no T	J. Colle	g Info is n	rovided	AMA	vill occi	an defeul	ta of F D	Cell	67	102-06	121
ATTER HOURS (I	iusi be pre-schedulea)	4 Hours	NORM	AL BUSINESS	HOURS	l oviueu,	AIVIA	massi	gn delau	IS OI 5-D	bay and	emai	DRT TO:	on file.
4 Hours Late N Immediate Date Due	light	Same Day	3 Day		Res	lts Requi	red By No		Email:	mira			K. Com	
24 Hours Time Du	e:	Next Day	5 Day + Date Due:	12/11/20		no reequi	icu by ru		Email:	Cour	HORN	0 1	Hinc.com	
Comments:		2 Day	Date Due:	101.100					U Verbal		mod	Cu		
Asbestos Analysis		TEM Bu	lk						Analysis			_		
* <u>PCM Air</u> – Please Indica NIOSH 7400	ate Filter Type:		LAP 198.4/Cha	tfield	(QTY)			P	b Paint Ch	ip	(QTY))	
Fiberglass	(OTV)		LAP 198.4/Cha IY State PLM/T esidual Ash	(QT	${(QTY)}$				Pb Dust W	ipe (wipe	type)	_(QTY)
TEM Air* – Please Indica	ate Filter Type:	UV TEM Du	ermiculite						Pb Air b Soil/Soli	d	_(QTY)	TV		
AHERA NIOSH 7402	(QTY)		ual. (pres/abs) V	Vacuum/Dust		(OTY)		ΏР	b TCLP_			$\tilde{\mathbf{D}}$		
U Other (specify)(QTY		uan. (s/area) Va	cuum D5755-9	5	(OTY	0		Drinking W	ater Pb_	(Q)		Cu(QTY)	As(QTY)
PLM Bulk EPA 600 – Visual	Estimate (OTY)	Pos Stop TEM Wa	uan. (s/area)Du	st D6480-99		(QTY)		ΟP	b Furnace	Media	(QTY			S(QTY)
EPA Point Count	Estimate(QTY)		ual. (pres/abs)_ LAP 198.2/EPA	(QTY)		1	Fungal A	Analysis					
Grav. Reduction F	198.1(QTY) ELAP 198.6(QTY)	U B	LAP 198.2/EPA	100.2	(QTY	0		C	ollection A ollection N	pparatus i	for Spore	Traps	s/Air Samples:	
U Other (specify	(QTY	`	PA 100.1					۲ 🖪 🖥	Spore-Trap Surface Sv		QTY)	□ St	urface Vacuum Dust	(OTY)
MISC Asbestos Soil PLM	Qual) PLM (Quan) PLM/TEM (Qual)	PI M/TEM (Over)	ll samples recei M Water sample	ved in good con es°C)	dition unles	s otherwis	se noted.		Surface Sv	vab	(QTY)			(2)
*It is recommended that bla	ink samples be submitted with all air and surface	(Quall)	eld data sheets are s		no need to cor	nplete botto	m section	J D °	Surface Ta ther (Specify.	pe	(QTY) (OTY)			
	SAMPLE INFORMATION				VALYSIS	apiete oota							, COMME	
CLIENT ID #	SAMPLE LOCATION / ID	DATE TIME		Area	LOW LOW		WOLD		AATRIX	SPORT SPORT	TAPE /	SWAB	SPECIAL INST	RUCTIONS
20-694 1	outdoors - paricin			Allea A		131	V V			<u>48</u>	F	5		
20-694 2	Field blank	DISTINUTION	MMM	1		+ +				-		-+		
	main office.	12/2 9:								1				
20-694 9		12/2 10:0	OPID							~		-+		
	room 104		OS AM	100		+	-	-		1		\rightarrow		
	gymnasium	12 2 10:1				+ +				-		-+	-	14 A
20-694 7	room 112	12/2 10:2		1.53						~			-	
80-69A 8	room 223	12/2 10:3								~		-+		
20-694 9	room 215	122 10:	45 Am	1.24	1.75			-			-	\rightarrow		
			A NA A									-+	91	
		s						-				-+		14
				- 1		-						+		
												-+		
~	Print Name			Signature			Date		T	me				
Relinquished by:	Mikal Frater	n	rikaps	Frate	2	121	3 20		3:00		Ι-		Shipping Inform	
Received by:	- HAA	/	A	5	-	12	3/20		152	-] UPS] FedEx	Drop Box] Other

Chain of Custody: Client: Address: Attention:	285346 ATI, Inc. 9220 Rumsey F Suite 100 Columbia, MD 2 Mikal Frater					Job Location:GJob Number:2	AQ - PGCPS Alenridge Elementary 0-694 lot Provided	School			Date Submitted: Person Submitting: Date Analyzed: Report Date:		03/01/20 Mikal Fr 03/01/20 03/01/20	ater)21		
AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location		285346-1 20-694-1 TLW Air-O-Cell 75 Acceptable 1 Parking Lot				AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location	285346-2 20-694-2 TLW Air-O-Cell 0 Acceptabl 1 Field Blan	e			AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location	20 TL Ain 75 Ac 1	r-O-Cell			
	Raw Ct	Trav/Flds	A.S.	sp/m ³	%		Raw Ct T	av/Flds	A.S. sp	m ³ %		Raw Ct	Trav/Flds	A.S.	sp/m ³	%
Alterr	naria					Alternaria	ı				Alternaria					
Ascosp	oores 62	15	53	3286	76.5%	Ascospores	3				Ascospores	1	15	53	53	14.3%
Basidiosp	oores 18	15	53	954	22.2%	Basidiospores	5				Basidiospores					
Bipolaris/Drechslera/H	lelm.					Bipolaris/Drechslera/Helm.					Bipolaris/Drechslera/Helm.					
Chaeton	nium					Chaetomium	1				Chaetomium					
Cladospo	prium					Cladosporium	1				Cladosporium	2	15	53	106	28.6%
Curvu	ularia					Curvularia	ı				Curvularia					
Penicillium / Asperg	gillus					Penicillium / Aspergillus	\$				Penicillium / Aspergillus	4	15	53	212	57.1%
Smuts/Periconia/Myxomyc	cetes 1	15	53	53	1.2%	Smuts/Periconia/Myxomycetes	3				Smuts/Periconia/Myxomycetes					
Stachybotrys/Memnor	niella					Stachybotrys/Memnoniella	1				Stachybotrys/Memnoniella					
Uloclad	dium					Ulocladium	1				Ulocladium					
Unkn	nown					Unknown	1				Unknown					
Other Colo	rless					Other Colorless	3				Other Colorless					
Hyphal Fragme	ents [*]					Hyphal Fragments					Hyphal Fragments [*]					
Total Raw	/ Ct: 81		Total	sp/m ³ :	4293	Total Raw Ct	: 0		Total sp/r	n³: 0	Total Raw Ct:	7	-	Fotal s	p/m ³ :	371
	Con	nments				Nc	Comments o mold spores observ	ed.				Comme	nts			

Chain of Custody: Client: Address: Attention:	285346 ATI, Inc. 9220 Rumsey Suite 100 Columbia, ME Mikal Frater					Job Location: Job Number:	IAQ - PGCPS Glenridge Elen 20-694 Not Provided	nentary Sch	ool			Date Submitted: Person Submitting: Date Analyzed: Report Date:	03/01/2021 Mikal Frater 03/01/2021 03/01/2021
AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location		285346-4 20-694-4 TLW Air-O-Cell 75 Acceptable 2 RM 112				AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location	20 TL Aii 75 Ac 2	5346-5 -694-5 W -O-Cell eceptable					
	Raw	Ct Trav/Flds	A.S.	sp/m ³	%		Raw Ct	Trav/Flds	A.S.	sp/m ³	%		
Alterr	naria					Alternar	ria						
Ascosp	ores 4	15	53	212	11.8%	Ascospore	es 1	15	53	53	2.9%		
Basidiosp	ores 4	15	53	212	11.8%	Basidiospore	es						
Bipolaris/Drechslera/H	lelm.					Bipolaris/Drechslera/Heli	m.						
Chaeton	nium					Chaetomiu	im						
Cladospo	rium 24	15	53	1272	70.6%	Cladosporiu	ım 1	15	53	53	2.9%		
Curvu	Ilaria					Curvular	ria						
Penicillium / Asperg	gillus					Penicillium / Aspergilli	us 33	15	53	1749	94.3%		
Smuts/Periconia/Myxomyc	etes 1	15	53	53	2.9%	Smuts/Periconia/Myxomycete	es Present	15	53	<53			
Stachybotrys/Memnon	niella					Stachybotrys/Memnonie	lla						
Uloclad	dium					6 Ulocladiu	ım						
Unkn	nown					Unknov	vn						
Other Color	rless 1	15	53	53	2.9%	Other Colorle	SS						
Hyphal Fragme	ents [*]					Hyphal Fragment	ts [*]						
Total Raw	Ct: 34		Total	sp/m ³ :	1802	Total Raw C	Ct: 35		Total s	p/m ³ :	1855		
	Co	omments					Comme	nts					

ASTM D7391-09 Spore Trap Analysis Report

Chain of Custody:	285346	Job Name:	IAQ - PGCPS	Date Submitted:	03/01/2021
Client:	ATI, Inc.	Job Location:	Glenridge Elementary School	Person Submitting:	Mikal Frater
Address:	9220 Rumsey Road	Job Number:	20-694	Date Analyzed:	03/01/2021
	Suite 100	P.O. Number:	Not Provided	Report Date:	03/01/2021
	Columbia, MD 21045				
Attention:	Mikal Frater				

Spore Comparison Guide

The criteria for these specifications are outlined, but not limited to those listed, below. Final specifications may differ from the listed criteria for certain samples. AMA Analytical Services, Inc. reserves the right to make changes to these criteria at any time without notice.

Normal ecology	Slightly above normal ecology	Moderately above normal ecology	Substantially above normal ecology	

Stachybotrys / Memnoniella, and Chaetomium	Other Spores* (Control Present)	Other Spores* (No Control)
1-4 Spores: Yellow	< 10 Spores: Insignificant (no color)	< 10 Spores: Insignificant (no color)
5-9 Spores: Orange	<= Control's spore count: Green	10-20 Spores: Yellow
10+ Spores: Red	Between Control and 2x Control: Yellow	20-50 Spores: Orange
	Between 2x Control and 3x Control: Orange	50+ Spores: Red
	3x+ Control: Red	

*No evalutation is provided for the following spore types: Other, Other Colorless, and Unknown Fungi, and Misc

Interpretation of the data contained in this report is the sole responsibility of the client or the persons who conducted the field work. There are no federal or national standards for the number of fungal spores that may be present in the indoor environment. As a general rule and guideline that is widely accepted in the indoor air quality field, the numbers and types of spores that are present in the indoor environment should be comparable to those that are present outdoors at any given time. There will always be some mold spores present in "Normal" indoor environments. The purpose of sampling and counting spores is to help determine whether an abnormal condition exists within the indoor environment and if it does, to help pinpoint the area of contamination. Spore counts should not be used as the sole determining factor of mold contamination. There are many factors that can cause anomalies in the comparison of indoor and outdoor samples due to the dynamic nature of both of those environments.

This report is provided for informational and comparative purposes only and should not be relied upon for any other purpose. Sampling techniques, possible contaminants, unrepresentative samples and other similar or dissimilar factors may affect these results. With the statistical evaluation provided, as with all statistical comparisons and analyses, false-positive and false-negative results can and do occur. AMA Analytical Services, Inc. hereby disclaims any liability for any and all direct, indirect, punitive, incidental, special or consequential damages arising out of the use or interpretation of the data contained in, or any actions taken or omitted in reliance upon, this report.

ASTM D7391-09 Spore Trap Analysis Report

Chain of Custody:	285346	Job Name:	IAQ - PGCPS	Date Submitted:	03/01/2021
Client:	ATI, Inc.	Job Location:	Glenridge Elementary School	Person Submitting:	Mikal Frater
Address:	9220 Rumsey Road	Job Number:	20-694	Date Analyzed:	03/01/2021
	Suite 100	P.O. Number:	Not Provided	Report Date:	03/01/2021
	Columbia, MD 21045				
Attention:	Mikal Frater				

General Comments, Disclaimers, and Footnotes

Analytical Method:	Sample are analyzed following the instructions and guidelines outlined in ASTM 7391-09.
Sample Condition:	Acceptable: The sample was collected and delivered to the our location without disturbing the material on the sampling media. Unacceptable: 1. The sample trace (TR) has been disturbed. 2. The sample was damaged or otherwise unsuitable for analysis. 0 = No particulate matter detected; 1= >nd-~5% Particulate Loading; 2 = ~5%-25% Particulate Loading; 3 = ~25%- 75% Particulate Loading; 4 = ~75%-90% Particulate Loading; 5 = >90% Particulate Loading
Spore Notes:	Based on their small size and very few distinguishing characteristics, Aspergillus and Penicillium cannot be differentiated by non-viable sampling methods. There are other types of spores whose morphology is similar to Aspergillus and Penicillium and cannot be differentiated by non-viable sampling methods. Examples of these similar spores are Acremonium, Paecilomyces, Wallemia, Trichoderma, Scopulariopsis, and Gliocladium. Smuts, Periconia and Myxomycetes are three different types of genera that have similar morphological characteristics. Bipolaris/Dreschlera/Helm: Bipolaris / Dreschlera / Helminthosporium are three different types of genera that have smiliar morphological characteristics. Other Colorless represents all colorless spores that are non-distinctive and unidentifiable. *Hyphal Fragments: A portion of the mycelium that becomes separated from the remainder of the thallus (vegetative body), each of which has the capacity to grow and form new individuals. Results for hyphal fragments are in fragments/m3 and are not incorporated in the total spore concentration. The droplet symbol (a) refers to water-intrusion indicator spores. These fungal spores, when found on indoor air samples, can be an indication of moisture sources and resultant fungal growth that may be problematic.
Quantification:	Analytical Sensitivity (A.S.): This is dependent on the volume of air collected, size of the trace, ocular diameter, and the amount of the trace that was analyzed. The value of "Present" indicated in the Raw Count column represents the presence of this spore type during the preliminary exam at 400x. The Raw Count converts to a whole number if the spore type is encountered again during the 600x-1,000x enumeration. The sp/m3concentration will be reported as less than the analytical sensitivity if "Present" is reported in the Raw Count. Results are reported to 3 significant figures. sp/m3: Spores per cubic meter. Uncertainty: for raw count in the range of 0-50 the SR is 0.375, 51-100 SR=0.333, 101-200 SR=0.257, >200 SR=0.245 All results are to be considered preliminary and subject to change unless signed by the Technical Director or Deputy. Analyst(s): Tristan Ward

Technical Director Tristan Ward

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these Laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from us. Sample types, locations, and collection protocols are based upon the information provided by the persons submitting them and, unless collected by personnel of these Laboratories, we expressly disclaim any knowledge and liability for the accuracy and completeness of this information. Residual sample material will be discarded in accordance with the appropriate regulatory guidelines, unless otherwise requested by the client.

MOLD SPORE DESCRIPTIONS

Ascospores

Ascospores are spores formed inside an ascus (asci-plural) or sac-like cell which is contained inside a fruiting body called an ascocarp or an ascoma (ascomata-plural). An ascus typically contains a definite nuimber of ascospores, usually eight. Ascospores are unique in shape, size, and color as to the Genus/species they represent. These spores are specific to fungi classified as Ascomycetes. They are ubiquitous in nature. Many decay organic matter, others are plant or animal pathogens. They can grow indoors on damp materials. Release of ascospores are released by forcible ejection and dispersed by wind, water, animals and other agents. Health Effects: Depending on the Genera, Ascospores may be allergenic.

Basidiospores

Basidiospores are reproductive spores produced by a group of fungi called basidiomycetes. This group includes the mushrooms, shelf fungi and various other macrofungi. Basidipspores serve as the main air (wind) dispersal units for the fungi and their release is dependent upon moisture. The structure of the spore complex can develop in various manners resulting in different appearances. It is often found growing in soil, decaying plant debris, compost piles and fruit rot. Indoors, it can be found on water damaged building materials (chipboard /OSB, plywood, wallpaper, and glue) as well as on food items (dried foods, cheeses, fruits, herbs, spices, cereals). Health effects: Some basidiospores may produce toxins and can act as allergens. They have not been reported to be pathogens.

Cladosporium

Cladosporium is the most common indoor and outdoor mold. The spores are wind dispersed and are often extremely abundant in outdoor air. Many species are commonly found on living and dead plant material. Indoors, they may grow on surfaces with high moisture or high humidity levels such as damp window sills, poorly ventilated bathrooms and soiled refrigerators. It produces powdery or velvety olive-green to brown or black colonies. The conidia (spores) vary depending on the species and are formed in simple or branching chains with multi-attachment points. Health Effects: Cladosporium species are rarely pathogenic to humans, but have been reported to occassionally cause sinusitis and pulmonary infections as well as infections of the skin and toenails. The airborne spores are significant allergens, and in large amounts they may severely affect asthmatics and people with respiratory diseases.

Other Colorless

- "Other Colorless" are all non-distinctive, unidentifiable, colorless spores seen on spore trap samples and include all the genera that do not have distinguishing morphology to belong to any of the other defined categories."

Penicillium/Aspergillus Like

Penicillium and Aspergillus are ubiquitous, filamentous fungi that are found in soil, decaying plant debris, compost piles, and in the air. Indoors, spores are commonly found in house dust, in water-damaged buildings (wallpaper, wallpaper glue, decaying fabrics, moist chipboards, and behind paint) as well as fruit and grains. They are the most common fungal genera, worldwide. Both produce chains of spores that are small, round to oval, colorless or slightly pigmented, and smooth to rough walled. These spores are indistinguishable between the two as well as other genera, such as Gliocladium, Trichoderma, Paecilomyces, and Scopulariopsis. They differ as to their conidiophores or fruiting bodies. While, Aspergillus spores are produced from phialides supported on conidia heads or swollen vesicles, Penicillium spores are produced on finger-like projections. Depending on species, typical colonies of Aspergillus are initially white and later turn to either shades of green, yellow, orange, brown or black. Texture is usually velvety to cottony. Typical colonies of Penicillium, other than Penicillium marneffei (yeast-like at 37oC), grow rapidly, white in color at first, later becoming bluish green with white borders with velvety to powdery textures depending on species. Some species produce radial patterns. Health Effects: Both Aspergillus and Penicillium are potential allergens. Several species of Aspergillus (A. flavus and A. parasiticus) produce aflatoxins or natually occurring mycotoxins that are toxic and carcinogenic. These are found in contaminated foodstuff and are hazardous to consumers. Penicillium has only one known species that is pathogenic to humans (P. marneffei) that causes lethal systemic infection (Penicilliosis) in immunocompromised individuals.

Smuts/Periconia/Myxomycetes

Smuts, Periconia, and Myxomycetes spores are grouped together due to their similar round, brown morphology. Smuts are outdoor parasitic plant pathogens. They rarely grow indoors but may grow on host plants if appropriate conditions are present. They are parasitic plant pathogens. They can be found on cereal crops, grasses, flowing plants, weed, and other fungi. They can cause allergies. Periconia are found in soils, dead herbaceous stems and leaf spots, and grasses. They have wind dispersed dry spores. Their spores are abundant in the air but it is not known if they are allergenic. Myxomycetes are found on decaying logs, stumps and dead leaves. They have wind-dispersed dry spores and wet motile (amoebic phase) spores. During favorable conditions they move about like amoebae. They form dry airborne spores when conditions are unfavorable. They are rarely found indoors. Health Effects: They may cause Type 1 allergies (hay fever, asthma). No human infections have been reported.

AMA Analytical Services, Inc. Focused on Results www.amalab.com AIHA-LAP (#100470) NVLAP (#101143-0) NY ELAP (10920) 4475 Forbes Blvd. • Lanham, MD 20706 (301) 459-2640 • (800) 346-0961 • Fax (301) 459-2643

(Please Refer To This Number For Inquires)

285346

Mailing/Billing In 1. Client Name:										forma		(110	S					
		Forbes Blud . Surfe 2												Eler	<u>ne.0</u>	ANY	م حد	noci
		m, MD 20706						Job	#. 20	>-69	4					<u>, , , , , , , , , , , , , , , , , , , </u>	8	PO #
							4.	Con	tact P	erson:	Mil	call	Frate					Cell (848) 702 - 8621
		Fax								by: <u>N</u>								Cell: <u>"</u>
										•		ed. A	MA w	rill ass	ign d	efault	s of 5-Day	y and email/fax to contacts on file.
	<u> </u>	st be pre-scheduled)								URS		,			0			REPORT TO:
🛛 4 Hours		-	4 Hours Same Day		3 3 Da	ıy			ſ	T Resi	ults Re	quired	By No	on	E E	mail:	mikal Ca	atiinc com
Immediate Dat			Next Day	, c	35Da	ay + 2 ue:	512.	21	, ,			• •	•		-			
24 Hours Tirr Comments:	ie Due:		🖬 2 Day	1	Date D	ue: <u> </u>	70	t či										
Asbestos Analysi	c		T	EM Bulk										Metals				
*PCM Air - Please	Indicate		П	EMI BUIK CIELAI	P 198.4	l/Chatf	īeld			(OTY)	,		•		Pb Pai	nt Chi		(QTY)
		(QTY)		🗆 NY S	tate PI	LM/TE	М		(QTY)				Q	*Pb D	ust Wi	pe (wipe ty	pe)(QTY)
Fiberglass TEM Air* – Please 1		=(QTT) e Filter Type:		Resid	ual As	sh		(Q	(TY)					- u	*Pb A Ph Soi	ir MSolid		QIY) (QTY)
AHERA		(OTY)	L.	<u>EM Dus</u> t* Oual Dual	(pres/	abs) V	acuum	/Dust			(OT)	n			РЬ ТС	LP		(QTY)
		(QTY))(QTY	n	Quan										Q	Drinki	ng Wa	ter C Pb	$(QTY) \square Cu (QTY) \square As (QTY)$
PLM Bulk	-				. (s/are	a)Dusi	t D648	0-99_			(QTY)						$\underline{(QTY)} \square Cu (QTY) \square As (QTY)$
EPA 600 – V	isual E	Estimate (QTY) [Pos Stop	EM Water	(pres/	abs)			OTY)			J	Funga	l Analy	ysis		
NY State Fri	able 19	8.1 (OTY)		🖵 Qual. 🖵 ELA	P 198.2	2/EPA	100.2		(x ,	_ _(QTY	Y)				Collect	tion A	pparatus for	Spore Traps/Air Samples:
Grav. Reduct	tion EL	.AP 198.6(QTY)		🖵 EPA	100.1_			_ (QT	Y)						Collec *Spor	tion M	edia	Y) Surface Vacuum Dust (QTY)
U Other (specif MISC	ý)	All sa						n unles	ss othe	rwise 1	noted.		*Surfa	ce Sw	ab(Q1	QTY) Culturable ID Genus (Media (QTY)
Vermiculite				(TEM V														TY) Culturable ID Species (Media)(QTY)
		(Qual) PLM_(Quan) PLM/TEM_(Qual		n) If field d	ata shee	ts are su	ibmitted	l, there i	is no ne	ed to co	mplete l	bottom	section.	ų	Other (S	pecify_)((QTY)
"It is recommended		samples be submitted with all air and surface SAMPLE INFORMATION	-			AN	VALYS	SIS	13	,	1 3	15	MATR	IX 3/ 4/4	1 4	19	,	CLIENT CONTACT
CLIENT ID #		SAMPLE LOCATION/ II	DATE/ D TIME	Wipe Area		2			2 X	Į₹				<u> </u>) Å		(LABORATORY STAFF ONLY)
20-694	1	Parking Lot	2 27 21	-			•		/	1								ne: Contact:By:
20-694	2	BIANK							~	~								
20-694	3	Main office							5	~								
20.94	4	200m 112							1	~								
20-694	5	Room 104						1 1	/	.							Date/Tir	ne: Contact:By:
									[
																	Date/Tir	ne: Contact:By:
									r. 								Datorin	io. conduct.by.
									5	-								
			++					<u> </u>		<u> </u>			+				 	
		l				L	I		L		L	L	<u> </u>	L	L			
	<u> </u>	Print Name		$+\infty$	1-		ignatur				<u> </u>		Date		<u> </u>		me Abo	Shipping Information
Relinquished Received		Mikal Frater		mi	ro	<u>_</u> V <u>_</u>	24	20	<u> </u>		⊢ z	442			<u>├</u>	1:40	rin	Green FedEx - Drop Box
Relinquished						_					+-	. 1			1			
Received for Lab	<u> </u>	4			\checkmark	~	\sum				12	112	21		12	x)	Airbill/Tracking No:

Appendix B: Instrument Calibration Records

Certificate of Calibration

() Buck™ BioAire Pump Calibration Rotameter () BuckTM BioSlide Pump Calibration Rotameter

Serial number: R15046

Date Calibrated: 11/12/2020 Calibration Due Date: 11/12/2021

Flow Calibration

This is to certify that the rotameter listed above has been calibrated using a Buck Primary calibrator listed below which is calibrated according to A.P. Buck, Inc. calibration procedure APB-1, Ver. 6.2 and is traceable to the National Institute of Standards & Technology (N.I.S.T). A.P. Buck guarantees the accuracy of the rotameter to be within \pm 5% of the actual flow rate.

AMBIENT CONDITIONS: Temperature $74\pm3^{\circ}$ F Relative Humidity $50\pm10\%$

Description	MFR.	Model	Serial #
Primary Calibrator	A.P. Buck Inc.	M30B	□ A40020 □ A40021
QA Appr	oval By: NO	oran' M	Nent

Information contained in this document should not be reproduced in any form without the written consent of A.P. Buck, Inc. It is for reference only and cannot be used as a form of endorsement by any private or governmental regulatory body.

> A.P. BUCK, INC. 7101 Presidents Drive. Suite 110 Orlando, FL 32809 Phone: 407-851-8602 Fax: 407-851-8910

CERTIFICATE OF CALIBRATION AND TESTING

TSI Incorporated, 500 Cardigan Road, Shoreview, MN 55126 USA Tel: 1-800-874-2811 1-651-490-2811 Fax: 1-651-490-3824 http://www.tsi.com

ENVIRONMENT C	ONDITIONS			Mo	0.01			7575-X	
Темрекатике 70.72 (21.5) °F (°С)			°F (°C)		DEL			1919-2	
RELATIVE HUMIDIT	Y	39.0	%RH			Numero	7	575X1711006	
BAROMETRIC PRESSURE		29.15 (987.1)	inHg (hPa)	SERIAL NUMBER			1	575×1711000	
🖾 AS LEFT 🗌 AS FOUND	- C A L	IBRATI		TOLERA JT OF TO	DLER	ANCE	RESULT	s –	
THERMO COUPL	E		Syst	EM PR	ESS	URE01-02		Unit: °F (°C)	
	1			H S			te compos		
# STANDARD	MEASURED	ALLOW	ABLE RANGE	11	STA	NDARD	MEASURED	ALLOWABLE RANGE	
# STANDARD 1 70.9 (21.6)	MEASURED 70.8 (21.6)		ABLE RANGE 9 (20.5-22.7)		STA	NDARD	MEASURED	ALLOWABLE RANGE	
	70.8 (21.6)		9 (20.5-22.7)			URE01-02	MEASURED	ALLOWABLE RANGE Unit: inHg (hPa)	
1 70.9 (31.6)	70.8 (21.6)	68.9-72	9 (20.5-22.7)	EM PR			MEASURED		

TSI does hereby certify that the above described instrument conforms to the original manufacturer's specification (not applicable to As Found data) and has been calibrated using standards whose accuracies are traceable to the United States National Institute of Standards and Technology (NIST) or has been verified with respect to instrumentation whose accuracy is traceable to NIST, or is derived from accepted values of physical constants. TSI's calibration system is registered to ISO-9001:2015.

Measurement Variable Temperature Pressure

System ID E004626 E003982

Last Cal. Cal. Due 02-14-20 02-28-21 01-24-20 07-31-20

Measurement Variable Pressure DC Voltage

System ID	Last Cal.	Ca
E005254	10-10-19	10-
E003493	08-14-19	08-

Last Cal.	Cal. Due
10-10-19	10-31-20
08-14-19	08-31-20

ChaoVang

CALIBRATED

June 15, 2020

DATE

6	A.
V	C
	14

CERTIFICATE OF CALIBRATION AND TESTING

TSI Incorporated, 500 Cardigan Road, Shoreview, MN 55126 USA

Tel: 1-800-874-2811 1-651-490-2811 Fax: 1-651-490-3824 http://www.tsi.com

EN	VIRONMENT CO	NDITIONS				ODEL			7575-X
TEMPERATURE 70.6			70.68 (21.5	0.68 (21.5) °F (°C)					
Relative Humidity BAROMETRIC PRESSURE 2		38.0	%RH SFR		SERIAL NUMBER		7	7575X1711006	
		29.16 (987.5) inHg (hPa)		SERIAL NUMBER					
	□ As Left ⊠ As Found	- C A L I	BRAT		Tolei jt of ' I F I	foler	ANCE	RESULTS	<u>s –</u>
Ти	IERMO COUPLE			Syst	EM PI	RESS	URE01-02		Unit: °F (°C
#	STANDARD	MEASURED	ALLC	WABLE RANGE	#	STA	NDARD	MEASURED	ALLOWABLE RANGE
1	70.8 (21.6)	71.1 (21.7)	68.8~	72.8 (20.4~22.7)					
BA	ROMETRIC PR	ESSURE		Syst	EM P	RESS	URE01-02		Unit: inHg (hPa)
#	STANDARD	MEASURED	A	LLOWABLE RANG	E	#	STANDARD	MEASURED	ALLOWABLE RANGE
1	29.22 (989.5)	29.17 (987.8)	28.6	4~29.80 (969.9~100	9.1)				

TSI does hereby certify that the above described instrument conforms to the original manufacturer's specification (not applicable to As Found data) and has been calibrated using standards whose accuracies are traceable to the United States National Institute of Standards and Technology (NIST) or has been verified with respect to instrumentation whose accuracy is traceable to NIST, or is derived from accepted values of physical constants. TSI's calibration system is registered to ISO-9001;2015.

Measurement Variable Temperature Pressure

System ID E004626 E003982

Measurement Variable Pressure DC Voltage

System ID	Last C
E005254	10-10-
E003493	08-14-

ast Cal.	Cal. Due
0-10-19	10-31-20
8-14-19	08-31-20

Chao Vang Verified

June 15, 2020 DATE

Cal. Due 02-28-21

07-31-20

Last Cal. 02-14-20 01-24-20

EN	- Completion	NS			Мо	DEL			982
	NVIRONMENT CONDITIO	74	.0 (23.3) °F (°C)	INIC				P17100007
	ELATIVE HUMIDITY		34 %R		SEF	HAL NUMB	ER		P1/100001
	AROMETRIC PRESSURE	29.:	20 (988.8) inH	lg (hPa)		NICE			
F	AS LEFT					OLERANCE			
			BRATIO		EL	CATIO	N	RESUL	т s –
-		CALIE	RATIO	N VERI	FI	CA110			Unit: pp
	GAS CO2 AS FOUND				SYST #	EM G-101 Standard	T	MEASURED	ALLOWABLE RANGE
	# STANDARD ME.	ASURED	ALLOWABI		4	3015.3		* 2902.7	2924.9~3105.8 4904.3~5207.7
	1 0	0	0~: 449~		5	5056		* 4859.6	4904.3-3201.1
	2 499	458	952~						Unit: p
	3 1002	963			SVS	гем G-101			ALLOWABLE RANGE
Г	GAS CO AS FOUND		A	BLE RANGE	#	STANDARI	>	MEASURED	97.5~103.5
	# STANDARD MI	EASURED		~38.1	2	100.5		* 84.8	Unit: °F (
	35.1	* 29.5			SVS	TEM T-101			Unit: "F (ALLOWABLE RANGE
	TEMPERATURE AS	FOUND	DATE DAT	NGE # S	STANE	ARD		SURED	139.02~141.02 (59.45~60.5
	# STANDARD MEAS	URED AL	.1~33.1 (-0.5~	100		60.01) *	41.3	1 (60.73)	Unit: %
	1 32.1 (0.0) 32.8	(0.4) 31	.1~55.1 (0.0		SV	STEM H-102			ALLOWABLE RANG
	HUMIDITY AS FOU	JND		BLE RANGE	#	T a way		MEASURED	67.0~73.0
	# STANDARD N	IEASURED	ALLOWA)~13.0	4	70.0		67.1 * 85.88	87.01~93.01
	1 10.0	<u>10.4</u> 29.3		.0~33.0	5	90.01		* 85.00	
	2 30.0	48.5		.0~53.0		1		*/	ndicates Out-of-Tolerance Co
M	5								A Viendards and
ANAN JEER WAANAA J	5	s been verifie I's calibratio	Last (1) Last (1) 4095 04-06 4095 04-06 8 05-15 41 09-02 525 01-00 557 02-1	Stered to ISO-9 Cal. Cal. Du 5-20 04-06-2 9-20 05-19-2 3-19 09-30-2 6-20 01-31-2 3-19 08-12-2	25 28 20 21 22 21 22	e original man able to the Un topse accuracy 015. <u>Measureme</u> 200 CO Air Flow Flow Flow 100 C4H8 Temperatu Humidity	<u>nt Va</u>	riable <u>Syster</u> 14988 T179 E003 E003	m ID Last Cal. Cal. Du 36 04-30-20 03-24-2 39 04-09-20 04-09-3 980 04-22-20 04-30-3 342 09-03-19 09-30-3 07339 03-24-20 03-24-4 0658 02-14-20 02-28-3
	TSI does hereby certify th data) and has been calibr Technology (NIST) or ha of physical constants. TS. <u>Measurement Varia</u> 5000 CO2 N2 Flow Flow 2000 C4H8 Temperature	s been verifie I's calibratio <u>ble</u> <u>Svsten</u> 14A04 T-0603 E0033 E0035 EB002 E0106	Last (1) Last (1) 4095 04-06 4095 04-06 8 05-15 41 09-02 525 01-00 557 02-1	Stered to ISO-9 Cal. Cal. Du 5-20 04-06-2 0-20 05-19-2 3-19 09-30-2 6-20 01-31-2 3-19 08-12-2 4-20 02-28-2	25 28 20 21 22 21 22	Measureme 200 CO Air Flow Flow 100 C4H8 Temperatu	<u>nt Va</u>	riable <u>Syste</u> 14983 T179 E003 E003 CC56 E010 E003	m 1D Last Cal. Cal. Du 36 04-30-20 03-24-2 39 04-09-20 04-09-2 980 04-22-20 04-30-3 342 09-03-19 09-30-0 07339 03-24-20 03-24-2 04-09-20 04-30-3 04-30-3 0558 02-14-20 02-28-3 0539 02-26-20 08-31-3 15, 2020 15, 2020
	TSI does hereby certify th data) and has been calibr Technology (NIST) or ha of physical constants. TS. <u>Measurement Varia</u> 5000 CO2 N2 Flow Flow 2000 C4H8 Temperature	s been verifie I's calibratio <u>ble</u> <u>Svsten</u> 14A04 T-0603 E0033 E0035 EB002 E0106	Last (1) Last (1) 4095 04-06 4095 04-06 8 05-15 41 09-02 525 01-00 557 02-1	stered to ISO-9 Cal. Cal. Du 5-20 04-06-2 9-20 05-19-2 3-19 09-30-2 6-20 01-31-2 3-19 08-12-2 4-20 02-28-1 1-20 01-31-2	20007:2 25 28 20 21 22 21 22 21 22	Measureme 200 CO Air Flow Flow 100 C4H8 Temperatu	<u>nt Va</u>	riable <u>Syste</u> 14983 T179 E003 E003 CC56 E010 E003	m ID Last Cal. Cal. Dr. 36 04-30-20 03-24-3 39 04-09-20 04-09-9 980 04-22-20 04-30-3 342 09-03-19 09-30-3 77339 03-24-20 03-24-3 9658 02-14-20 02-36-3 9539 02-26-20 08-31-3

CERTIFICATE OF CALIBRATION AND TESTING

TSI Incorporated, 500 Cardigan Road, Shoreview, MN 55126 USA Tel: 1-800-874-2811 1-651-490-2811 Fax: 1-651-490-3824 http://www.tsi.com

Environment Conditions						ODEL		982		
Γen	IPERATURE		70.41 (21.3)	°F (°C)						
REL	ATIVE HUMIDITY	(50.3	%RH	SE	RIAL NUMBI	P17100007			
BAROMETRIC PRESSURE 29.15 (987.1) inHg (hPa)										
	As Left				n Tolef)ut of 1	ANCE OLERANCE				
	LASTOUND	- C A L	IBRATI	ON VER	1.6.1	CATIO	N RESUL	т s —		
						EM T-101		Unit: °F (°C		
	MPERATURE V	MEASURED	ALLOWAR	LE RANGE		TANDARD	MEASURED	ALLOWABLE RANGE		
#	STANDARD 22.1 (0.0)	31.9 (-0.1)		(-0.5~0.6)		40.0 (60.0)	139.0~141.0 (59.5~60.6)			
					Syst	ЕМ Н-102		Unit: %R		
Hu	MIDITY VERI	T	1 11100	ABLE RANGE	#	STANDARD	MEASURED	ALLOWABLE RANGE		
-						DIANDAND				
#	STANDARD	MEASURED			4	70.0	69.5	67.8~72.2		
1	10.0	9.0	7	.8~12.2	4		69.5 88.7	67.8~72.2 87.8~92.2		
1	10.0 30.0	9.0 29.1	7	.8~12.2 7.8~32.2		70.0		0.1.2		
1	10.0	9.0	7	.8~12.2	4	70.0 90.0		87.8-92.2		
1 2 3	10.0 30.0	9.0 29.1 49.6	7	.8~12.2 7.8~32.2 7.8~52.2	4 5 Sys1	70.0 90.0 TEM G-101	88.7	87.8-92.2 Unit: pp		
1 2 3	10.0 30.0 50.0	9.0 29.1 49.6	7	.8~12.2 7.8~32.2 7.8~52.2 ABLE RANGE	4 5 Syst	70.0 90.0 EM G-101 STANDARD	88.7 MEASURED	87.8-92.2 Unit: pp		
1 2 3 C	10.0 30.0 50.0 D2 GAS VERIF	9.0 29.1 49.6 ICATION	7 2' 4' ALLOW	.8~12.2 7.8~32.2 7.8~52.2 /ABLE RANGE 0-50	4 5 SYS1 # 4	70.0 90.0 EM G-101 STANDARD 3016	88.7 MEASURED 3012	87.8~92.2 Unit: pp ALLOWABLE RANGE 2926~3107		
1 2 3 C # 1	10.0 30.0 50.0 O2 GAS VERIF STANOARD	9.0 29.1 49.6 ICATION MEASURED	7 2' 4' ALLOW	.8~12.2 7.8~32.2 7.8~52.2 ABLE RANGE	4 5 Syst	70.0 90.0 EM G-101 STANDARD	88.7 MEASURED	87.8~92.2 Unit: pp ALLOWABLE RANGE		
1 2 3 C	10.0 30.0 50.0 02 GAS VERIF STANOARD 0	9.0 29.1 49.6 ICATION MEASURED 0	7 2 4 4 ALLOW	.8~12.2 7.8~32.2 7.8~52.2 /ABLE RANGE 0-50	4 5 SYS1 # 4	70.0 90.0 EM G-101 STANDARD 3016	88.7 MEASURED 3012	87.8~92.2 Unit: pp ALLOWABLE RANGE 2926~3107 4904~5208		
1 2 3 C 4 1 2 3	10.0 30.0 50.0 O2 GAS VERIF STANOARD 0 502 1005	9.0 29.1 49.6 ICATION MEASURED 0 502 1019	7 2 4 4 ALLOW	.8~12.2 7.8~32.2 7.8~52.2 (ABLE RANGE 0~50 (52~552	4 5 Syst # 4 5	70.0 90.0 EM G-101 STANDARD 3016	88.7 MEASURED 3012	87.8~92.2 Unit: pp ALLOWABLE RANGE 2926~3107 4904~5208 Unit: pp		
1 2 3 C # 1 2 3	10.0 30.0 50.0 O2 GAS VERIF STANDARD 0 502	9.0 29.1 49.6 ICATION MEASURED 0 502 1019	ALLOW	.8~12.2 7.8~32.2 7.8~52.2 (ABLE RANGE 0~50 (52~552	4 5 Syst # 4 5	70.0 90.0 EM G-101 STANDARD 3016 5056	88.7 MEASURED 3012	87.8~92.2 Unit: pp ALLOWABLE RANGE 2926~3107		

TSI does hereby certify that the above described instrument conforms to the original manufacturer's specification (not applicable to As Found data) and has been calibrated using standards whose accuracies are traceable to the United States National Institute of Standards and Technology (NIST) or has been verified with respect to instrumentation whose accuracy is traceable to NIST, or is derived from accepted values of physical constants. TSI's calibration system is registered to ISO-9001:2015.

Measurement Variable Temperature Temperture 5000 CO2 N2 Flow Flow 2000 C4H8	<u>System ID</u> E010657 E010655 14A044095 T-0608 E003241 E003525 EB0054467	Last Cal. 02-14-20 01-21-20 04-06-29 05-19-20 09-03-13 01-06-20 08-13-19	Cal Due 02-28-21 01-31-21 04-06-25 05-19-28 09-30-20 01-31-21 08-12-22	Measurement Variable Temperature Humidity 200 CO Air How Flow 100 C4!18	Svstem 1D E010658 E003539 149886 T17939 E003980 E003342 CC507339	Last Cal. 02-14-20 02-26-20 04-30-20 04-09-20 04-09-20 04-22-20 09-03-19 03-24-20	Cal. Due 02-28-21 08-31-20 03-24-28 04-09-28 04-30-21 09-30-20 03-24-28
--	--	---	---	--	---	---	--

Chao Varia CALIBRATED

June 16, 2020

DATE