

February 26, 2021

Prince George's County Public Schools 13300 Old Marlboro Pike Upper Marlboro, Maryland 20772 Attention: Mr. Alex Baylor

RE: Indoor Air Quality Assessment, Seabrook Elementary School Purchase Order: 734977 ATI Project Number: 20-691

Dear Mr. Baylor:

Prince George's County Public Schools requested that ATI, Inc., conduct a proactive indoor air quality (IAQ) assessment at Seabrook Elementary School on December 1, 2020 and a follow-up assessment on February 25, 2021. The assessments' key findings are enclosed in the Executive Summary on page three, and the official laboratory reports for total fungal spore trap sampling are enclosed in Appendix A.

Thank you for the opportunity to provide Industrial Hygiene services for Prince George's County Public Schools. If you have any questions regarding this report, please contact us at (202) 643-4283.

Sincerely, ATI, INC.

Reviewed By:

Nate Burgei, CIH, CSP Certified Industrial Hygienist

Contrien Anecale

Courtney E. McCall Project Manager

Indoor Air Quality Assessment Report

Prince George's County Public Schools Seabrook Elementary School 6001 Seabrook Road Seabrook, MD 20706

Prepared for:

Prince George's County Public Schools 13300 Old Marlboro Pike Upper Marlboro, Maryland 20772

February 26, 2021

Submitted by:

ATI Job # 20-691

Table of Contents

Table of Contents	1
1 Executive Summary	1
2 Assessment Methods	1
3 Visual Observations	
4 Thermal Environmental Conditions for Human Occupancy	4
4.1 Temperature	5
4.2 Relative Humidity	5
4.3 Carbon Dioxide	6
4.4 Carbon Monoxide	7
5 Total Fungal Air Sampling Results	8
6 Summary of Findings	

List of Tables

Table 1: Visual Observations and Sampling Locations	2
Table 2: Temperature	
Table 3: Relative Humidity	
Table 4: Carbon Dioxide	
Table 5: Carbon Monoxide	8
Table 6: Aspergillus/Penicillium Concentration Comparison	9

Appendices

Appendix A: Laboratory Reports and Chain of Custody

Appendix B: Instrument Calibration Records

Abbreviations and Acronyms

AHU	Air-Handling Unit
AIHA	American Industrial Hygiene Association
ASHRAE	American Society of Heating, Refrigerating and Air-Conditioning Engineers
ASTM	American Society for Testing and Materials
CO	Carbon Monoxide
CO ₂	Carbon Dioxide
EMLAP	Environmental Microbiology Laboratory Accreditation Program
HVAC	Heating, Ventilating, And Air-Conditioning
IAQ	Indoor Air Quality
NIST	National Institute for Standards and Technology
NVLAP	National Voluntary Laboratory Accreditation Program
RH	Relative Humidity
Rev.	Revision

Abbreviations involving scientific volume and measurements involving media or water sampling

Spores/m ³	Mold spores per cubic meter of air
LPM	Liters Per Minute
NTE	Not to exceed
°F	degree Fahrenheit
PPM	Parts Per Million

1 Executive Summary

ATI conducted a proactive Indoor Air Quality (IAQ) assessment on December 1, 2020, at Seabrook Elementary School, located at 6001 Seabrook Road, Seabrook, MD, and a follow-up assessment on February 25, 2021 in select rooms that had unusual results in the initial inspection.

The initial assessment on December 1, 2020 included a visual assessment of randomly selected classrooms and other frequently occupied spaces, such as the cafeteria/gym, the main office, and randomly selected classrooms, for potential IAQ contributors and pathways. All tested rooms had unusual fungal spore concentrations during the initial assessment and all tested spaces were included for the follow-up assessment on February 25, 2021 after actions were taken to reduce the presence of mold and repair any water issues discovered. As part of both assessments, ATI measured common IAQ comfort parameters, including temperature, relative humidity, carbon dioxide, and carbon monoxide. Also, ATI collected total fungal air samples on spore trap cassettes for microbiological analysis.

The following is a summary of the key findings from these assessments:

- 1. Four of the tested spaces on December 1, 2020 had a temperature less than the ASHRAE recommended winter range of 68-75°F, while one room had a temperature greater than the ASHRAE recommended range during the initial assessment. On the day of the December assessment, one boiler was offline, which caused many rooms to have no heat. All of the tested spaces on February 25, 2021 had a temperature within the ASHRAE winter range.
- 2. The relative humidity in all tested spaces was less than the ASHRAE guidelines of <65%, but greater than 30%. All of the tested spaces on February 25, 2021 had a relative humidity less than 30%, which does not promote mold growth, but can cause occupant discomfort.
- 3. Carbon dioxide concentrations in all tested spaces were less than the ASHRAE limit for carbon dioxide, which was 1,083 parts per million (PPM) for the initial assessment in December and 1,095 ppm for the February reassessment.
- 4. The average carbon monoxide concentrations in all areas, for both assessments, were less than the EPA and ASHRAE recommended limit of 9 ppm.
- 5. The spore trap sampling results from the December 1, 2020 assessment suggested some level of indoor amplification of mold was present in all of the tested spaces. ATI recommended reassessing these spaces after cleaning and mold treatment occurred.
- 6. The February 25, 2021 reassessment showed a reduction in *Aspergillus/Penicillium* ranging from 58 to 99% reduction in the reassessed rooms. Because the *Aspergillus/Penicillium* concentration in Room 15 and 18 was greater than 1,000 spores/m³ during the reassessment, ATI recommends an additional round of cleaning in these rooms using HEPA vacuums on floors and surfaces, as well as wet wiping of horizontal surfaces to remove residual spores in the room. Running HEPA equipped air scrubbers for 24 to 48 hours will also help in reducing residual spore concentrations.

2 Assessment Methods

Mikal Frater, IH of ATI, Inc. conducted the initial visual assessment and air sampling on December 1, 2020. Sampled rooms were randomly selected and accounted for approximately 10% of classrooms or a minimum of five samples. Ms. Frater documented visual observations at the time she collected the air samples. Nate Burgei, CIH, CSP, conducted a follow-up inspection on February 25, 2021 in all of the previously tested rooms after the areas were treated for mold presence. ATI references the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) *Standard 62.1 – 2016* and ASHRAE *Standard 55 – 2017* when providing IAQ services to clients. ASHRAE is an industry leader on energy efficiency and indoor air quality.

All measurements and air samples were collected between three-six feet from floor elevation, which represents a typical adult breathing zone, and away from air-supply and return diffusers. Real-time direct readings for temperature, relative humidity,

carbon dioxide (CO₂), and carbon monoxide (CO), were measured with a calibrated TSI Q-Trak 7575-X Meter and attached 982 Probe.

Total fungal air samples were collected with a field calibrated Buck BioAire High-Volume Sampling Pump on Zefon Air-O-Cell spore-trap cassettes at a flow rate of 15 liters per minute for a sample volume of 75 liters during the initial assessment and 150 liters for the follow-up assessment. EMSL Analytical, Inc. of Beltsville, MD analyzed the initial assessment and AMA Analytical Services, Inc. of Lanham, MD analyzed the follow-up assessment samples using direct microscopic examination per ASTM D7391, which spores both viable and non-viable mold spores and particulates, which combined yields total fungal results. Both EMSL and AMA participates in the National Institute of Standards and Technology's (NIST) National Voluntary Laboratory Accreditation Program (NVLAP) for general laboratory performance and management, and the American Industrial Hygiene Association (AIHA) for Environmental Microbial Laboratory Accreditation Program (EMLAP). The EMSL and AMA laboratory reports are included in Appendix A.

3 Visual Observations

Table 1 lists the areas, conditions, observations, and other pertinent details related to the initial and follow-up IAQ assessments. On both dates of sampling, few occupants were present in the school because of the COVID-19 global pandemic.

Sample Location	December 1, 2020 Observations
Outdoors	 Light wind and small puddles in the parking lot were present from yesterday's heavy rain. Some grass and small plants were about 15 feet from the sampler.
Room 10	 Wall ventilator supplies the heat and is not running. Housekeeping looks adequate in the room and return air grille is free of dirt load. Student supplies and books are stored along the perimeter of the room. Student desks are empty. The sink is dripping and Bab-o-Brand cleanser with bleach is next to the sink and sprinkled into it. Space is approximately 1,420 square feet and has a vinyl tile floor and a roof deck ceiling.
Room 13	 The sink is running slowly and is unclear when it was turned on. Wall ventilator supplies the heat and is not running. It looks a bit dusty and has some paper debris in the vents. Dust and dead insects are on the windowsills and on floor near the windows. One area rug is present and materials are stored on student desks. Room is approximately 1,420 square feet with vinyl flooring. Ceiling is the roof deck.
Room 14	 Wall ventilator supplies the heat and is not running. Dust and dead insects are in the ventilator supply vents. A dead plant is on a desk about 10 feet from the sampler. Student materials are not put away, and materials and papers are scattered through the room. Room is approximately 1,420 square feet with vinyl flooring and a roof deck ceiling.

Table 1: Visual Observations and Sampling Locations

SEABROOK ELEMENTARY SCHOOL

Sample Location	December 1, 2020 Observations
Cafeteria Multipurpose Room	 Three occupants are present during sampling. Heat is functioning in the room. Dozens of books are stacked on the adjoining stage. Wall convector units are present on both sides of the room. Some were inaccessible with tables stored along them. Ones that could be accessed were free of debris. Light dust/debris are on windowsills. Approximately 4,700 square feet with vinyl tile flooring and a roof deck ceiling.
Room 18	 Wall ventilator is blowing cold air. Dust and insect fragments are on windowsills and on the floor by the ventilator. Two area rugs have dirt/debris on them. Student materials are scattered in the room. Computer monitors are staged in the rear of the room. Room is approximately 1,420 square feet with vinyl flooring and a roof deck ceiling.
Room 15 (Reading Room)	 Wall ventilator is functioning and blowing warm air. Most of room is covered in carpet (approx. 85%) and the rest is tile. Ventilator and windowsill are dusty with insect fragments and dead insects on the floor. Restroom and office adjoin the room. Exit door to courtyard is present. Hundreds of books are stored, along with other student supplies. Approximately 675 square feet with most of room covered in carpet (approx. 85%) and the rest is tile.
Main Office	 One person is present in the room during sampling. The office is orderly and housekeeping looks good. Some papers/binders are near the testing site. Ceiling tile looks clean. The door to the hall is shut during sampling. Room is approximately 450 square feet with vinyl tile flooring.

Sample Location	February 25, 2021 Reassessment Observations				
Outdoors	 Collected in front parking lot near front entrance Sunny, mild breeze and mostly dry grass and pavement 				
Outdoors	 Summy, mild breeze and mostly dry grass and pavement Low traffic on main road 				
Room 10	 Unoccupied space with heat off, door to hallways shut There was a wet spot under the sink under a dripping valve, multiple water stains under the sink, but only one was wet at time of assessment Faucet dripping into sink, sink wet. No other signs of water intrusion, and room was otherwise clean Light dust on surfaces and floor, wall vents clean 				
Room 13	 Unoccupied space with heat on, door to hallways shut There was a wet spot under the sink under a dripping valve, signs of substantial previous water damage, but only one spot was wet at time of assessment Faucet dripping into sink, sink wet. 				

Design+Build | Environmental | Facility/Program Management

Sample Location	February 25, 2021 Reassessment Observations					
	No other signs of water intrusion, and room was otherwise clean					
	Light dust on surfaces and floor, wall vents clean					
	 Light water stain near teacher's desk, but otherwise ceiling appeared clean Unoccupied space with heat off, door to hallways shut 					
Room 14	 The cabinet under the sink showed signs of previous water damage but was painted over and appeared dry to the touch. Appears there was wood damaged after it was painted over. No signs of current water leaks. There was unusual discoloration on the beams coming into the space on the 					
	wall with the TV on it that appeared either rusted, dusty or possible growth.					
	 No other signs of water intrusion, and room was otherwise clean 					
	 Light dust on surfaces and floor, wall vents clean 					
Cafeteria Multipurpose Room	 The custodian was in and out of the adjacent kitchen, but otherwise unoccupied The cafeteria space appeared clean, however the stage floor had moderate dust and debris Minor ceiling stain on stage near the roof access door There were some unusual stains on the ceiling above the custodian's door 					
	There were open gaps in all of the exit doors, but all were not very wide					
Room 18	 Unoccupied space with heat on, door to hallways shut The sink and faucet was clean and dry with no signs of water issues Some desks had good amount of dust and debris, while others appeared clean Light dust on surfaces and floor, wall vents clean There were dust and spider webs in the corner of the room No other signs of water intrusion 					
Room 15 (Reading Room)	 Unoccupied space with heat on, door to hallways shut The sink in the health unit room appeared dry, but showed signs of past water damage under the sink Door to the outdoors appeared well sealed Moderate dust and debris on the carpet The mini-fridge in the space appeared clean Ceiling tiles appeared clean and free from water stains 					
Main Office	 One occupant in the Pupil Services office, but the main area was unoccupied Occupant expressed concerns in the Pupil Services office due to past flooding Minor water stains on ceiling tiles near vents, otherwise ceiling tiles were clean No signs of major water intrusion, and surfaces appeared clean Air vents appeared to be moderately dusty 					

4 Thermal Environmental Conditions for Human Occupancy

ASHRAE *Standard 55-2017, Thermal Environmental Conditions for Human Occupancy*, addresses thermal comfort in an office environment, which means that an employee wearing a normal amount of clothing feels neither too cold nor too warm. This standard discusses thermal comfort within the context of air temperature, humidity, and air movement and provides recommended ranges for temperature and humidity that are intended to satisfy 80% of occupants. The recommended ASHRAE ranges are referenced below by each comfort parameter.

4.1 Temperature

The ASHRAE standard establishes a winter comfort range of between 68°F and 75°F and a summer range of between 73°F and 79°F. The temperatures measured during the December 1, 2020 initial assessment and reassessment from February 25, 2021 are summarized in Table 2. As indicated by the data in the table, temperatures in the school on December 1, 2020, averaged between 57°F and 77°F, with four tested locations measuring less than the ASHRAE recommended winter range, while the cafeteria had a temperature greater than the ASHRAE winter range.

ATI reassessed all of the previously tested spaces on February 25, 2021, after remediation actions were completed. ATI also reassessed the temperature in the reassessed rooms. The average temperatures in the reassessed locations ranged from 70°F to 74°F, which all rooms were within the ASHRAE recommended range for winter.

Sample Location	12/1/2	2020 Initial Assess ⁰F	ASHRAE Standard				
	Min	Мах	Average	۰F			
Outdoors	49	53	51	N/A			
		Indoors					
Room 10	57	58	58	68-75°F			
Room 13	58	58	58	68-75°F			
Room 14	56	57	57	68-75°F			
Cafeteria Multipurpose Room	75	78	77	68-75°F			
Room 18	62	64	63	68-75°F			
Room 15 (Reading Room)	72	72	72	68-75°F			
Main Office	70	71	71	68-75°F			
	2/25/2021 Reassessment						
Temperature in ∘F							
Outdoors	58	59	59	N/A			
		Indoors					
Room 10	72	72	72	68-75°F			
Room 13	69	70	70	68-75°F			
Room 14	72	72	72	68-75°F			
Cafeteria Multipurpose Room	74	74	74	68-75°F			
Room 18	72	73	73	68-75°F			
Room 15 (Reading Room)	71	71	71	68-75°F			
Main Office	72	72	72	68-75°F			

-	- h		٩.	т.			-4	
I	aD	le	Ζ:	Ie	mp	er	atu	ire

4.2 *Relative Humidity*

Relative humidity is a key factor for mold growth. Mold has the potential of growing on suitable surfaces with humidity levels above 65%. ASHRAE *Standard 62.1-2016, Ventilation for Acceptable Indoor Air Quality,* recommends a maximum indoor relative humidity of 65% to prevent condensation of moisture on surfaces. Relative humidity less than 30% may result in drying of occupants' mucous membranes and skin. Relative humidity measurements for December 1, 2020 and February 25, 2021 are summarized in Table 3. As indicated by the data in the table, the average relative humidity on December 1, 2020 ranged between 30% and 52% with all tested locations measuring less than the ASHRAE maximum recommendation of 65% relative humidity, but greater than 30% relative humidity.

ATI reassessed all of the previously tested rooms on February 25, 2021, after fungal remediation actions were completed. ATI also reassessed the relative humidity in the space during the reassessment, and the average relative humidity ranged

between 19% and 28% with all of the tested locations measuring both less than the ASHRAE maximum recommendation of 65% relative humidity and less than 30% relative humidity.

Table 3: Relative Humidity						
Sample Location	12/1/2	2020 Initial Assess (% RH)	ASHRAE Standard			
	Min	Мах	Average	(% RH)		
Outdoors	41	42	42	N/A		
		Indoors				
Room 10	50	51	51	< 65		
Room 13	50	50	50	< 65		
Room 14	51	52	52	< 65		
Cafeteria Multipurpose Room	27	33	30	< 65		
Room 18	39	42	41	< 65		
Room 15 (Reading Room)	35	36	36	< 65		
Main Office	38	39	39	< 65		
2/25/2021 Reassessment						
Relative Humidity (%RH)						
Outdoors	19	19	19	N/A		
		Indoors				
Room 10	22	23	23	< 65		
Room 13	27	28	28	< 65		
Room 14	23	23	23	< 65		
Cafeteria Multipurpose Room	26	29	28	< 65		
Room 18	18	19	19	< 65		
Room 15 (Reading Room)	20	21	21	< 65		
Main Office	18	19	19	< 65		

Table 3: Relative Humidity

4.3 Carbon Dioxide

Carbon dioxide concentrations within an occupied building are a standard method used to gauge the efficiency of ventilation systems. Carbon dioxide is a by-product of human respiration and does not pose an acute health hazard alone. Elevated concentrations may suggest that insufficient fresh air is being supplied to an occupied space and/or that the ventilation system does not provide a sufficient rate of air exchange.

Research has indicated that buildings with adequately operating ventilation systems are able to remove odors generated by activities in an indoor office environment efficiently. ASHRAE *Standard 62.1-2016* states that comfort (odor) criteria with respect to human bioeffluents are likely to be satisfied if the ventilation can maintain indoor carbon dioxide concentrations less than 700 parts per million (ppm) greater than the outdoor air concentration. Typically, outdoor carbon dioxide concentrations range from 300 ppm to 450 ppm, with the higher range typically found in urban areas during peak rush hour.

Carbon dioxide concentrations for December 1, 2020 are summarized in Table 4. On the day of the assessment, the average outdoor carbon dioxide concentration was 383 ppm, which calculates to a maximum indoor concentration of 1,083 ppm (700 + 383). All tested locations indoors were less than the recommended maximum for the day of the assessment.

ATI reassessed all of the previously tested spaces on February 25, 2021, after remediation actions were completed. The carbon dioxide concentrations measured during the reassessment are included in Table 4. The average outdoor carbon dioxide concentration on February 25, 2021 was 395 ppm, which calculates to a maximum indoor concentration of 1,095 ppm (700 + 395). All tested locations indoors were less than the recommended maximum for the day of the reassessment.

	Table 4. Call					
Sample Location		2020 Initial Asses stration (parts per	ASHRAE Standard			
	Min	Max	Average	(ppm) NTE		
Outdoors	379	387	383	N/A		
		Indoors				
Room 10	388	393	391	< 1,083		
Room 13	380	385	383	< 1,083		
Room 14	378	386	382	< 1,083		
Cafeteria Multipurpose Room	427	437	432	< 1,083		
Room 18	399	409	404	< 1,083		
Room 15 (Reading Room)	412	439	426	< 1,083		
Main Office	505	543	524	< 1,083		
2/25/2021 Reassessment						
Concentration (parts per million)						
Outdoors	394	395	395	N/A		
		Indoors				
Room 10	415	422	419	< 1,095		
Room 13	402	404	403	< 1,095		
Room 14	414	419	417	< 1,095		
Cafeteria Multipurpose Room	440	491	466	< 1,095		
Room 18	415	416	416	< 1,095		
Room 15 (Reading Room)	410	427	427	< 1,095		
Main Office	434	448	448	< 1,095		

Table 4: Carbon Dioxide

4.4 Carbon Monoxide

Carbon monoxide is a colorless and odorless gas produced by the incomplete combustion of carbon containing fuels. Oil, gasoline, diesel fuels, wood, coke, and coal are the major sources of carbon monoxide. ASHRAE recommends that carbon monoxide not exceed nine ppm indoors over an eight-hour time-weighted average. ATI measured carbon monoxide concentrations using a TSI Q-Trak model number 7575-X with an attached IAQ probe (model number 982). The instrument's carbon monoxide sensor has an error range of \pm 3% of the reading or three (3) ppm, whichever is greater. As indicated by the data in Table 5, carbon monoxide concentrations for December 1, 2020 were less than the Q-Trak's detection limit throughout the school.

ATI reassessed all of the previously tested spaces on February 25, 2021, after remediation actions were completed. The carbon monoxide concentrations measured during the reassessment are included in Table 5. The carbon monoxide concentrations from the reassessment were also less than the Q-Trak's limit of detection and less than the EPA/ASHRAE recommended maximum of 9 ppm.

Sample Location		2020 Initial Assess stration (parts per		ASHRAE Standard
	Min	Мах	Average	(ppm)
Outdoors	< 3	< 3	< 3	N/A
		Indoors		
Room 10	< 9			
Room 13	< 3	< 3	< 3	< 9
Room 14	< 3	< 3	< 3	< 9
Cafeteria Multipurpose Room	< 3	< 3	< 3	< 9
Room 18	< 3	< 3	< 3	< 9
Room 15 (Reading Room)	< 3	< 3	< 3	< 9
Main Office	< 3	< 3	< 3	< 9
	2/25/2	021 Reassessmen	t	
		tion (parts per mi		
Outdoors	< 3	< 3	< 3	N/A
		Indoors		
Room 10	< 3	< 3	< 3	< 9
Room 13	< 3	< 3	< 3	< 9
Room 14	< 3	< 3	< 3	< 9
Cafeteria Multipurpose Room	< 3	< 3	< 3	< 9
Room 18	< 3	< 3	< 3	< 9
Room 15 (Reading Room)	< 3	< 3	< 3	< 9
Main Office	< 3	< 3	< 3	< 9

Table 5: Carbon Monoxide

5 Total Fungal Air Sampling Results

Mold is carried indoors through building entrances, open windows, loading docks, foot traffic into buildings, and the HVAC system. To thrive indoors, mold requires a food source, proper temperature and humidity to foster its growth.

The December 1, 2020 and February 25, 2021 mold assessments sampled air using spore trap cassettes in randomly selected classrooms and other areas throughout the facility. These cassettes collect both viable spores, those capable of producing more fungal colonies, and non-viable spores, which cannot reproduce. Based upon recognized industry practices, indoor mold concentrations are compared with those detected outdoors, which are also known as ambient or baseline samples.

In normal circumstances, the diversity of spores identified indoors and outdoors should be similar with some exceptions. The high concentration of one or two species of fungal spores identified indoors and the absence of the same species outdoors can indicate a moisture problem with the potential to degrade the air quality. Fungi species present indoors are typically found at levels ranging from approximately 10-50% of their levels in the outdoor air, reflecting the filtering by the building's HVAC system.

The results from December 1, 2020 suggested noteworthy amplification of *Aspergillus/Penicillium* was present throughout all tested spaces in the school. The outdoor concentration of *Aspergillus/Penicillium*-like spores on December 1, 2020 was 40 spores/m³; however, the indoor concentration of *Aspergillus/Penicillium*-like spores ranged from 4,430 to 52,300 spores/m³. The wide indoor distribution of this spore type suggests that there was current or prior mold growth that was either widespread throughout the building or a single source that was transported or distributed throughout the building, through means such as centralized HVAC contamination, general air dilution or contaminated cleaning materials. ATI inquired about any building leaks from the previous day's rain event, and building staff said that no leaks had occurred from it at that point. It is very possible that

ati_{NG} INDOOR AIR QUALITY REPORT

water damaged materials are present. Moreover, the low indoor concentration of ascospores and basidiospores supports that the contamination is not entering from outdoors, as those spore types often dominate the outdoor spore concentrations.

Cladosporium was elevated in Room 18 with 8,690 spores/m³ while it was not detected outdoors. Low concentrations of other spore types are not significant and are typical background genera.

Aspergillus/Penicillium-like and Cladosporium are common primary colonizers of indoor water damaged building materials, meaning they are typically the first mold genera to be observed on newer water damaged materials. While these genera also occur naturally outdoors in much lesser concentrations, the concentrations observed indoors during this assessment suggest they are from indoor origin.

All of the previously tested spaces were resampled on February 25, 2021, and the total mold spore and *Aspergillus/Penicillium*-like spore concentrations dropped substantially in all areas, ranging between a 58% drop to a greater than 99% drop in *Aspergillus/Penicillium*-like spore concentration. The Reading Room and Room 18 still had *Aspergillus/Penicillium*-like spore concentrations greater than 1,000 spores/m³. It is possible these spore concentrations are residual from the first clean up, and the spaces should be recleaned. ATI recommends additional HEPA vacuuming on all horizontal surfaces, followed by wet wiping all horizontal and vertical surfaces. If possible, running a HEPA equipped air scrubber for 24-48 hours will also help in significantly reducing residual spore concentrations.

Differences in concentrations between both dates of assessment are summarized in Table 6.

Sample Location	December 1, 2020 Concentrations Spores/m³	February 25, 2021 Concentrations Spores/m ³	% Change
Room 10	11,300	468	- 96%
Room 13	19,400	312	- 98%
Room 14	27,600	234	- 99%
Cafeteria	33,500	52	- 99%
Room 18	52,300	1,846	- 99%
Room 15 (Reading Room)	11,400	2,184	- 81%
Main Office	4,430	130	- 58%

Table 6: Aspergillus/Penicillium Concentration Comparison

*Room 18 also had over 8,690 spores/m³ of *Cladosporium* during the initial assessment. At the reassessment, concentrations decreased to 52 spores/m³ or by 99%.

The official laboratory reports with spore trap samples collected on December 1, 2020 and February 25, 2021, are presented in Appendix A.

6 Summary of Findings

- 1. Four of the tested spaces on December 1, 2020 had a temperature less than the ASHRAE recommended winter range of 68-75°F, while one room had a temperature greater than the ASHRAE recommended range during the initial assessment. On the day of the December assessment, one boiler was offline, which caused many rooms to have no heat. All of the tested spaces on February 25, 2021 had a temperature within the ASHRAE winter range.
- The relative humidity in all tested spaces was less than the ASHRAE guidelines of <65%, but greater than 30%. All of the tested spaces on February 25, 2021 had a relative humidity less than 30%, which does not promote mold growth, but can cause occupant discomfort.

ati_{NG} INDOOR AIR QUALITY REPORT

- 3. Carbon dioxide concentrations in all tested spaces were less than the ASHRAE limit for carbon dioxide, which was 1,083 parts per million (PPM) for the initial assessment in December and 1,095 ppm for the February reassessment.
- 4. The average carbon monoxide concentrations in all areas, for both assessments, were less than the EPA and ASHRAE recommended limit of 9 ppm.
- The spore trap sampling results from the December 1, 2020 assessment suggested some level of indoor amplification of mold was present in all of the tested space. ATI recommended reassessing these spaces after cleaning and mold treatment occurred.
- 6. The February 25, 2021 reassessment showed a reduction in *Aspergillus/Penicillium* ranging from 58 to 99% reduction in the reassessed rooms. Because the *Aspergillus/Penicillium* concentration in Room 15 and 18 was greater than 1,000 spores/m³ during the reassessment, ATI recommends an additional round of cleaning in these rooms using HEPA vacuums on floors and surfaces, as well as wet wiping of horizontal surfaces to remove residual spores in the room. Running HEPA equipped air scrubbers for 24 to 48 hours will also help in reducing residual spore concentrations.

We appreciate the opportunity to provide these IAQ testing services for you. If you have any questions, please contact us at (202) 643-4283.

Best, ATI, INC.

Nate Burgei, CIH, CSP Certified Industrial Hygienist

Appendix A: Laboratory Report and Chain of Custody

EMSL Analytical, Inc.

5221 Militia Hill Road Plymouth Meeting, PA 19462 Tel/Fax: (610) 828-3102 / (610) 828-3122 http://www.EMSL.com / plymouthmeetinglab@emsl.com

EMSL Order:	182003869
Customer ID:	ATII25A
Customer PO:	
Project ID:	

Attention: Courtney McCall

ATI 4221 Forbes Blvd Suite 250 Lanham, MD 20706 Project: 20-691 Seabrook ES Phone: (202) 832-1433 Fax: Collected Date: 12/01/2020 Received Date: 12/01/2020 03:02 PM Analyzed Date: 12/08/2020

Test Report:Air-O-Cell(™) Analysis of Fungal Spores & Particulates by Optical Microscopy (Methods MICRO-SOP-201, ASTM D7391)													
Lab Sample Number:	1	82003869-0001 31462182		1	82003869-0002 31461915		1	82003869-0003 31461974					
Client Sample ID: Volume (L):		51462162 75			75			75					
Sample Location:		Room 10			Room 13		Room 14						
Spore Types	Raw Count	Count/M ³	% of Total	Raw Count	Count/M ³	% of Total	Raw Count	Count/M ³	% of Total				
Alternaria (Ulocladium)	-	-	-	-	-	-	-	-	-				
Ascospores	-	-	-	-	-	-	1*	10*	0				
Aspergillus/Penicillium	267	11300	94.4	459	19400	95.8	654	27600	97				
Basidiospores	15	630	5.3	19	800	4	18	760	2.7				
Bipolaris++	-	-	-	-	-	-	-	-	-				
Chaetomium	-	-	-	-	-	-	-	-	-				
Cladosporium	1	40	0.3	1	40	0.2	3*	40*	0.1				
Curvularia	-	-	-	-	-	-	-	-	-				
Epicoccum	-	-	-	-	-	-	-	-	-				
Fusarium	-	-	-	-	-	-	-	-	-				
Ganoderma		-	-	-	-	-	-	-	-				
Myxomycetes++		-	-	-	-	-	2*	30*	0.1				
Pithomyces++	-	-	-	-	-	-	-	-	-				
Rust	-	-	-	-	-	-	-	-	-				
Scopulariopsis/Microascus	-	-	-	-	-	-	-	-	-				
Stachybotrys/Memnoniella	-	-	-	-	-	-	-	-	-				
Unidentifiable Spores	-	-	-	-	-	-	-	-	-				
Zygomycetes	-	-	-	-	-	-	-	-	-				
Arthrinium	-	-	-	-	-	-	-	-	-				
Nigrospora	-	-	-	-	-	-	-	-	-				
Paecilomyces-like	-	-	-	-	-	-	-	-	-				
Total Fungi	283	11970	100	479	20240	100	678	28440	100				
Hyphal Fragment	-	-	-	-	-	-	-	-	-				
Insect Fragment	-	-	-	1*	10*	-	1	40	-				
Pollen	-	-	-	-	-	-	-	-	-				
Analyt. Sensitivity 600x	-	42	-	-	42	-	-	42	-				
Analyt. Sensitivity 300x	-	13*	-	-	13*	-	-	13*	-				
Skin Fragments (1-4)	-	2	-	-	1	-	-	1	-				
Fibrous Particulate (1-4)	-	1	-	-	1	-	-	1	-				
Background (1-5)	-	1	-	-	1	-	-	1	-				

182003869-0002 - Aspergillus conidiophores present in sample. 182003869-0003 - Aspergillus conidiophores present in sample.

++ Includes other spores with similar morphology; see EMSL's fungal glossary for each specific category.

Muni Un

Kevin Ream, Laboratory Manager or other Approved Signatory

EMSL maintains liability limited to cost of analysis. Interpretation and use of test results are the responsibility of the client. This report relates only to the samples reported above, and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. The report relacts the samples as received. Results are generated from the field sampling data (sampling volumes and areas, locations, etc.) provided by the client on the Chain of Custody. Samples are within quality control criteria and met method specifications unless otherwise noted. High levels of background particulate can obscure spores and other particulates, leading to underestimation. Background levels of 5 indicate an overloading of background particulates, prohibiting accurate detection and quantification. Present = Spores detected on overloaded samples. Results are not blank corrected unless otherwise noted. The detection limit is equal to one fungal spore, structure, pollen, fiber particle or insect fragment. "*" Denotes particles found at 300X. "-" Denotes not detected. Due to method stopping rules, raw counts in excess of 100 are extrapolated based on the percentage analyzed.

Samples analyzed by EMSL Analytical, Inc. Plymouth Meeting, PA AIHA-LAP, LLC-EMLAP Accredited #178659

Initial report from: 12/08/2020 10:35 AM

For information on the fungi listed in this report, please visit the Resources section at www.emsl.com MIC_M001_0002_0002 Printed: 12/08/2020 10:35 AM

EMSL Analytical, Inc.

5221 Militia Hill Road Plymouth Meeting, PA 19462 Tel/Fax: (610) 828-3102 / (610) 828-3122 http://www.EMSL.com / plymouthmeetinglab@emsl.com

EMSL Order:	182003869
Customer ID:	ATII25A
Customer PO:	
Project ID:	

Attention: Courtney McCall

ATI 4221 Forbes Blvd Suite 250 Lanham, MD 20706 Project: 20-691 Seabrook ES Phone: (202) 832-1433 Fax: Collected Date: 12/01/2020 Received Date: 12/01/2020 03:02 PM Analyzed Date: 12/08/2020

Test Report:Air-0			oores & Partic					,			
Lab Sample Number: Client Sample ID:	1	82003869-0004 31462023 75		1	82003869-0005 31461994 75		182003869-0006 31461921 75				
Volume (L): Sample Location:							_				
		teria Multipurpo		.	Room 18	0/ . C =		15 Reading R			
Spore Types Alternaria (Ulocladium)	Raw Count	Count/M ³	% of Total	Raw Count	Count/M ³	% of Total	Raw Count	Count/M ³	% of Total		
Alternana (Olociadium) Ascospores	-	- 40	- 0.1	-	- 40	- 0.1	-	-			
Aspergillus/Penicillium	793	33500	96.8	1240	52300	84.9	269	11400	94.1		
Basidiospores	20	840	2.4	2	80	0.1	12	510	4.2		
Bipolaris++	-	-	-	-	-	-	-	-	-		
Chaetomium	-	-	-	-	-	-	-	-			
Cladosporium	5	200	0.6	206	8690	14.1	5	200	1.7		
Curvularia	-		-		-	-	-		-		
Epicoccum	-	-	-	-	-	-	-	-	-		
Fusarium	-	-	-	-	-	-	-	-	-		
Ganoderma	-			-			-	-	-		
Myxomycetes++	2*	30*	0.1	2	80	0.1	-	-	-		
Pithomyces++	-	-	-	-	-	-	-	-	-		
Rust	-	-	-	-	-	-	-	-	-		
Scopulariopsis/Microascus	-	-	-	-	-	-	-	-	-		
Stachybotrys/Memnoniella	-	-	-	-	-	-	-	-	-		
Unidentifiable Spores	-	-	-	-	-	-	-	-	-		
Zygomycetes	-	-	-	-	-	-	-	-	-		
Arthrinium	-	-	-	-	-	-	-	-	-		
Nigrospora	-	-	-	1	40	0.1	-	-	-		
Paecilomyces-like	-	-	-	9	400	0.6	-	-	-		
Total Fungi	821	34610	100	1461	61630	100	286	12110	100		
Hyphal Fragment	-	-	-	1	40	-	-	-	-		
Insect Fragment	1	40	-	1*	10*	-	-	-	-		
Pollen	1	40	-	-	-	-	1*	10*	-		
Analyt. Sensitivity 600x	-	42	-	-	42	-	-	42	-		
Analyt. Sensitivity 300x	-	13*	-	-	13*	-	-	13*	-		
Skin Fragments (1-4)	-	2	-	-	1	-	-	2	-		
Fibrous Particulate (1-4)	-	1	-	-	1	-	-	1	-		
Background (1-5)	-	1	-	-	1	-	-	1	-		

182003869-0004 - Aspergillus conidiophores present in sample. 182003869-0006 - Aspergillus conidiophores present in sample.

++ Includes other spores with similar morphology; see EMSL's fungal glossary for each specific category.

Mun

Kevin Ream, Laboratory Manager or other Approved Signatory

EMSL maintains liability limited to cost of analysis. Interpretation and use of test results are the responsibility of the client. This report relates only to the samples reported above, and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. The report relates the samples as received. Results are generated from the Chain of Custody. Samples are within quality control criteria and met method specifications unless otherwise noted. High levels of background particulate can obscure spores and other particulates, inderestimation. Background levels of 5 indicate an overloading of background particulates, prohibiting accurate detection and quantification. Present = Spores detected on overloaded samples. Results are not blank corrected unless otherwise noted. The detection limit is equal to one fungal spore, structure, pollen, fiber particle or insect fragment. "*" Denotes particles found at 300X. "-" Denotes not detected. Due to method stopping rules, raw counts in excess of 100 are extrapolated based on the percentage analyzed.

Samples analyzed by EMSL Analytical, Inc. Plymouth Meeting, PA AIHA-LAP, LLC-EMLAP Accredited #178659

Initial report from: 12/08/2020 10:35 AM

For information on the fungi listed in this report, please visit the Resources section at www.emsl.com MIC_M001_0002_0002 Printed: 12/08/2020 10:35 AM

EMSL Analytical, Inc.

5221 Militia Hill Road Plymouth Meeting, PA 19462 Tel/Fax: (610) 828-3102 / (610) 828-3122 http://www.EMSL.com / plymouthmeetinglab@emsl.com

Attention: Courtney McCall

ATI 4221 Forbes Blvd Suite 250 Lanham, MD 20706 Project: 20-691 Seabrook ES Phone: (202) 832-1433 Fax: Collected Date: 12/01/2020 Received Date: 12/01/2020 03:02 PM Analyzed Date: 12/08/2020

Test Report:Air-O-Cell([™]) Analysis of Fungal Spores & Particulates by Optical Microscopy (Methods MICRO-SOP-201, ASTM D7391)													
Lab Sample Number: Client Sample ID: Volume (L):	1	82003869-0007 31462011 75		11	82003869-0008 31461985 75		1	82003869-0009 31462162					
Sample Location:		Main Office			Ambient		Field Blank						
Spore Types	Raw Count	Count/M ³	% of Total	Raw Count	Count/M ³	% of Total	Raw Count	Count/M ³	% of Total				
Alternaria (Ulocladium)	-	-	-	-	-	-	-	-	-				
Ascospores	-	-	-	3	100	3.9	-	-	-				
Aspergillus/Penicillium	105	4430	80.7	1	40	1.6	-	-	-				
Basidiospores	15	630	11.5	54	2300	89.8	-	-	-				
Bipolaris++	-	-	-	-	-	-	-	-	-				
Chaetomium	-	-	-	-	-	-	-	-	-				
Cladosporium	8	300	5.5	-	-	-	-	-	-				
Curvularia	-	-	-	-	-	-	-	-	-				
Epicoccum	1	40	0.7	2	80	3.1	-	-	-				
Fusarium	-	-	-	-	-	-	-	-	-				
Ganoderma		-	-	-	-	-	-	-	-				
Myxomycetes++	1	40	0.7	1	40	1.6	-	-	-				
Pithomyces++	-	-	-	-	-	-	-	-	-				
Rust	1	40	0.7	-	-	-	-	-	-				
Scopulariopsis/Microascus	-	-	-	-	-	-	-	-	-				
Stachybotrys/Memnoniella	-	-	-	-	-	-	-	-	-				
Unidentifiable Spores	-	-	-	-	-	-	-	-	-				
Zygomycetes	-	-	-	-	-	-	-	-	-				
Arthrinium	1*	10*	0.2	-	-	-	-	-	-				
Nigrospora	-	-	-	-	-	-	-	-	-				
Paecilomyces-like	-	-	-	-	-	-	-	-	-				
Total Fungi	132	5490	100	61	2560	100	-	No Trace					
Hyphal Fragment	-	-	-	-	-	-	-	-	-				
Insect Fragment	-	-	-	-	-	-	-	-	-				
Pollen	-	-	-	-	-	-	-	-	-				
Analyt. Sensitivity 600x	-	42	-	-	42	-	-	0	-				
Analyt. Sensitivity 300x	-	13*	-	-	13*	-	-	0*	-				
Skin Fragments (1-4)	-	2	-	-	1	-	-	-	-				
Fibrous Particulate (1-4)	-	1	-	-	1	-	-	-	-				
Background (1-5)	-	1	-	-	1	-	-	-	-				

++ Includes other spores with similar morphology; see EMSL's fungal glossary for each specific category.

Mun Un

Kevin Ream, Laboratory Manager or other Approved Signatory

EMSL maintains liability limited to cost of analysis. Interpretation and use of test results are the responsibility of the client. This report relates only to the samples reported above, and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. The report relacts the samples are seceived. Results are generated from the field sampling data (sampling volumes and areas, locations, etc.) provided by the client on the Chain of Custody. Samples are within quality control criteria and met method specifications unless otherwise noted. High levels of background particulates can obscure spores and other particulates, leading to underestimation. Background levels of 5 indicate an overloading of background particulates, prohibiting accurate detection and quantification. Present = Spores detected on overloaded samples. Results are not blank corrected unless otherwise noted. The detection limit is equal to one fungal spore, structure, pollen, fiber particle or insect fragment. "*" Denotes particles found at 300X. "-" Denotes not detected. Due to method stopping rules, raw counts in excess of 100 are extrapolated based on the percentage analyzed.

Samples analyzed by EMSL Analytical, Inc. Plymouth Meeting, PA AIHA-LAP, LLC-EMLAP Accredited #178659

Initial report from: 12/08/2020 10:35 AM

For information on the fungi listed in this report, please visit the Resources section at www.emsl.com MIC_M001_0002_0002 Printed: 12/08/2020 10:35 AM -MSI

EMSL ANALYTICAL, INC.

.

ĩ

Microbiology Chain of Custody EMSL Order Number (Lab Use Only):

EMSL ANALYTICAL, INC. 200 ROUTE 130 NORTH CINNAMINSON, NJ 08077 PHONE: (800) 220-3675 FAX:(856) 786-0262

182003869

LABORATORY - PRODUCTS -							·		
Company Name:	ATI, Inc.		J C					Different If	
Street: 4221 Forb		250		Third P	arty Billii	ng requin	es written au	thorization from t	hird party.
City: Lanham	S	tate/Province: M	D	Zip/Postal C	ode: 20	0706		Country:	
Report To (Name):	Courtney McCa			Telephone #	#: 703.3	99.5423			
Email Address: 여	ourtney@atiinc.co	m		Fax #:				Purchase Or	rder:
Project Name/Nun	nber: 20-691 Se	abrook ES		Please Prov	ide Rea	sults:	Fax	Email	
U.S. State Sample			Zip Code: 207						Residential
		hiosulfate Prese							
Public \	Water Supply S	amples: 🗌 Note:			•		to DOH if	required by st	ate.
			nd Time (TAT)	Options - Ple			6 Hour	🔳 1 Week	2 Week
3 Hour	🗌 6 Hour	24 Hour	Microbiolog			ə	o nour	IVVeek	L) 2 Week
M001 Air-O-Cell	M174 Mo	IdSnan		nonas aeruginos		**)	M115 Sew	age Screen - Wa	ter (P/A***)
M030 Micro 5		ergenco-D		nonas aeruginos ophic Plate Cou)	M116 Sew	age Screen - Wa age Screen - Swi	ter (MPN**)
M041 Fungal Direct E	xamination		M017 Total Co	liform & E. coli (Colilert P	P/A***)	M013 Sew	age Screen - Swa	ab (MFT*)
M169 Pollen ID & Enu				liform & E. coli (liform & E. coli E		tion	M133 Meth (MRSA)	nicillin-resistant Si	taph. aureus
M280 Dust Character M281 Dust Character			(Colilert MPN**	7			M031 Rapi	d-growing non-TE	B Mycobacteria
M005 Viable Fungi- A	ir Samples (Genu		M019 Fecal Co M020 Fecal St	oliform (MFT*) reptococcus (MF	-T*)			& Enumeration otoxin Analysis	
M006 Viable Fungi- A Aspergillus, Cladospo			M029 Enteroco	occi (MFT*)			M044 Grou	ip Allergen (Cat.	Dog, Cockroach,
Count) M007 Culturable fung		-		occi (Enterolert F ne gPCR-ERMI :		1	Dust Mite) Other See	Analytical Price	Guide
Count)			M025 Sewage	ScreenWater	(MFT*)		Legionella Legionella	Analysis Please	e use EMSL
M008 Culturable fung Penicillium, Aspergillu							Legionena		
Species ID & Count)	·		*MFT≈ Membr	ane Filtration Te	chnique				
M009 Bacteria Cultur M010 Bacteria Count			**MPN= Most I	Probable Numbe					
M011 Bacteria Count	& ID - 5 Most Pro	minent	***P/A= Preser	ice/Absence					
Name of Sampler:	Courtney M	cCall		Signature o	f Samp	ler: C	mary	f & Mu	call
Sample #		ntion/Description	Sample Type	Potable/ NonPotab (Only for Wat	le	Test Code	Volume/ Area	Date/Time Collected	Temperature ('C) (Lab Use Only)
Example A1	Kitchen Sink/T	ap	Water			M017	100 mL	9/1/13 4:00 PM	
3146 2182		om 10	Air		, 	M001	75L	12/1/20 930am	
3146 1915		om 13	Air		<u> </u>	M001	75L	12/1/20 945 am	
3146 1974		om 14	Air		<u>, </u>	M0 01	75L	12/1/20 954 am	<u>.</u>
3146 2023		Multipurpose	Air			M001	75L	12/1/20 1005 am	
3146 1994	. Ro	om 18	Air			M001	75L	12/1/20 1018 am	
Client Sample # (s	i):		Total # of S		9		Lab Use Onl	ý) – 1 ^d . – 1 ^d .	(es / No
Relinquished (Clie	ent): Gust	an la N	regali	Date: (24)	120		Time: 2	50pm	
Received (Lab):	K. Jonio	We yrop	FOV_	Date:			Time:	• · · · · · · · · ·	
Comments/Specia	if Instructions:	/							
								2020 E	7
									2
· · · · · · · · ·			Page 1	of 2					
•	•	erms and Conditions	are incorporated	into this chain o	-			entinety Success	sion of samples
to EMSL Analytical	l, Inc. constitutes a	acceptance and ackn	owledgment of all	terms and cond	itions by	Custom	er.		N N
Controlled Docume	ent – COC-34 Micr	o R8 11/14/2017						בר ס) m CD
								₩ <u>9</u> .	· • • •
								02 NC.	
		P	age 1 Of	3					()

10000

Microbiology Chain of Custody

EMSL Order Number (Lab Use Only):

EMSL ANALYTICAL, INC. 200 ROUTE 130 NORTH CINNAMINSON, NJ 08077 PHONE: (800) 220-3675 FAX:(856) 786-0262

182003869

Additional pages of the chain of custody are only necessary if needed for additional sample information

Sample #	Sample Location/Description	Sample Type	Potable/ NonPotable (Only for Waters)	Test Code	Volume/ Area	Date/Time Collected	Temperature (°C) (Lab Use Only)
3146 1921	Room 15 Reading Room	Air		M001	75L	12/1/20 1040 am	
3146 2011	Main Office	Air		M001	75L	12/1/20 1045 am	
3146 1985	Ambient	Air		M001	75L	12/1/20 1052 am	
3146 2162	Field Blann	Air		(noo)	_	12/1/20 -	
		<u> </u>					and the second secon
<u></u>							
	·						
							4
					· · · · · · · · · · · · · · · · · · ·		
				_			
	· · · · · · · · · · · · · · · · · · ·						
				ļ			
Commonte (Desciel				<u> </u>			· · ·
Comments/Special	INSTRUCTIONS:						
	<u></u>						

Page 2 of 2

EMSL Analytical, Inc.'s Laboratory Terms and Conditions are incorporated into this chain of custody by reference in their entirety. Submission of samples to EMSL Analytical, Inc. constitutes acceptance and acknowledgment of all terms and conditions by Customer

Controlled Document - COC-34 Micro R8 11/14/2017

EMS

1820**0386**9

EMSL Analytical, Inc.

Sample Transfer Form

	T	· · · · · · · · · · · · · · · · · · ·		<u> </u>								
Receiving Lab:	EMSL- BELTSV	'ILLE		Phone Number:	3019375700							
				Fax Number:	3019375701							
Relinquished to:	EMSL- Plym	outh M	tg.	Phone Number:	8002203675							
				Fax Number:	8567860262							
Does new lab hold eq	uivalent or add	itional accr	editation? *	1	Yes No							
EMSL Customer ID #		ATII25A	callucion									
(if known):												
Client Name:		ATI INC										
Client Project:		20-691 - SEABROOK ES										
Tests to be Performed	d:	M001										
Date Received:		12/1/20										
Date Relinquished:		12/2/20	12/2/20									
Date Due:	· · · · · · · · · · · · · · · · · · ·	1 WEEK - :	12/8/20 @ 3:0	2 PM	<u></u>	· · · · · · · · · · · · · · · · · · ·						
			<u></u>									
Special Instructions: (e.g. Work Order # , re	autrod											
qualifications, project	•											
procedures/modificat	•											
Relinquished by (Sign		Date:	Received by	(Signature):		Date:						
			1			Dutt.						
7. Yourth		12/2/20			1	12.3.20						
Relinquished by (Sign	ature):	Date:	Received by	(Signature):		Date:						
	•		//.									
			P									
Customer Agreement	- Please sign for	m and send	to the receivi	ng laborator	y. By signing below, ye	ou agree to permit the						
above named receivin	g lab to transfei	samples to	a separate EN	/ISL lab with	equivalent qualificatio	ons* for analysis. The						
final report will be issu	led from the an	alyzing labo	ratory. Ensur	e any requir	ements are listed in sp	ecial instructions.						
Name (please print):		Signature	:	Age	ent of:	Date:						
If this is a recurring pro	oject or sample	type that m	ay require san	ples to be re	elinquished on a regula	nr basis, a Standing						
Agreement form must												
* Receiving and analyzing												
Note: If customer has be												
above. EMSL employee fi	lling out form on	behalf of cus	stomer shall prir	nt name of pe	rson to whom they spok	e, date agreement was						

Controlled Document Confidential Business Information/Property of EMSL Page 3 Of 3

received, and then sign under Signature.

ASTM D7391-09 Spore Trap Analysis Report

Chain of Custody: Client: Address: Attention:	324881 ATI, Inc. 9220 Rumsey R Suite 100 Columbia, MD 2 Nate Burgei					Job Location:NJob Number:2	Location:Not ProvidedFNumber:20-691D					Date Submitted:02/25/2021Person Submitting:Nate BurgeiDate Analyzed:02/25/2021Report Date:02/25/2021					
AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location		324881-1 31569773 CD Air-O-Cell 150 Acceptable 1 Room 10				AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location	31! CD Air 150 Ace 1	-O-Cell				AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location	315 CD Air-1 150 Acc 1	881-3 69789 D-Cell eptable m 14			
	Raw Ct	Trav/Flds	A.S.	sp/m ³	%		Raw Ct	Trav/Flds	A.S.	sp/m ³	%		Raw Ct	Trav/Flds	A.S.	sp/m ³	%
Altern	aria					Alternaria	L					Alternaria					
Ascospo	ores 2	15	26	52	9.1%	Ascospores	2	15	26	52	5.7%	Ascospores	2	15	26	52	13.3%
Basidiospo	ores 1	15	26	26	4.5%	Basidiospores	17	15	26	442	48.6%	Basidiospores	4	15	26	104	26.7%
Bipolaris/Drechslera/H	elm.					Bipolaris/Drechslera/Helm.						Bipolaris/Drechslera/Helm.					
Chaetor	nium					Chaetomium	I					Chaetomium					
Cladospor	rium 1	15	26	26	4.5%	Cladosporium	4	15	26	104	11.4%	Cladosporium					
Curvu	laria					Curvularia	L					Curvularia					
Penicillium / Asperg	illus 18	15	26	468	81.8%	Penicillium / Aspergillus	12	15	26	312	34.3%	Penicillium / Aspergillus	9	15	26	234	60%
Smuts/Periconia/Myxomyc	etes					Smuts/Periconia/Myxomycetes	;					Smuts/Periconia/Myxomycetes					
Stachybotrys/Memnon	iella					Stachybotrys/Memnoniella	ι					Stachybotrys/Memnoniella					
♦ Uloclac	lium					Ulocladium	I					Ulocladium					
Unkn	own					Unknown	I					Unknown					
Epicoc	cum					Epicoccum	Present	15	26	<26		Epicoccum					
Hyphal Fragme	ante [*]					Hyphal Fragments	•					Hyphal Fragments*	Present	15	26	<26	
Total Raw			Total s	0/m ³ .	572	Total Raw Ct		т	otal e	sp/m ³ :	910	Total Raw Ct:	15		Total s		390
Total naw		iments	10101 5	, iii .	0,2		Commer		Juis	·P/III ·	010		Commen		101013	· · · · ·	000
	Con	inclus					Commer	11.3					commen				

ASTM D7391-09 Spore Trap Analysis Report

Chain of Custody: Client: Address: Attention:	324881 ATI, Inc. 9220 Rumsey R Suite 100 Columbia, MD 2 Nate Burgei	:. umsey Road 00 via, MD 21045				Job Location:NJob Number:2	Location:Not ProvidedPNumber:20-691D					Date Submitted:02/25/2021Person Submitting:Nate BurgeiDate Analyzed:02/25/2021Report Date:02/25/2021					
AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location		324881-4 31569716 CD Air-O-Cell 150 Acceptable 1 Cafeteria				AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location	31 Cl Ai 15 Ad	r-O-Cell				AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location	31 CE Air 15 Ac 2	-O-Cell			
	Raw Ct	Trav/Flds	A.S.	sp/m ³	%		Raw Ct	Trav/Flds	A.S.	sp/m ³	%		Raw Ct	Trav/Flds	A.S.	sp/m ³	%
Altern	naria					Alternaria	a					Alternaria					
Ascospo	ores 2	15	26	52	18.2%	Ascospores	s 3	15	26	78	21.4%	Ascospores	4	15	26	104	3.6%
Basidiospo	ores 4	15	26	104	36.4%	Basidiospores	s 6	15	26	156	42.9%	Basidiospores	12	15	26	312	10.8%
Bipolaris/Drechslera/H	elm.					Bipolaris/Drechslera/Helm.						Bipolaris/Drechslera/Helm.					
Chaetor	nium					Chaetomium	ı					Chaetomium					
Cladospor	rium					Cladosporium	ı					Cladosporium	11	15	26	286	9.9%
Curvu	laria					Curvularia	a					Curvularia					
Penicillium / Asperg	gillus 2	15	26	52	18.2%	Penicillium / Aspergillus	s 5	15	26	130	35.7%	Penicillium / Aspergillus	84	15	26	2184	75.7%
Smuts/Periconia/Myxomyc	etes 3	15	26	78	27.3%	Smuts/Periconia/Myxomycetes	6					Smuts/Periconia/Myxomycetes	Present	15	26	<26	
Stachybotrys/Memnon	iella					Stachybotrys/Memnoniella	a					Stachybotrys/Memnoniella					
♦ Uloclac	dium					♦ Ulocladium	ı					Ulocladium					
Unkn	iown					Unknown	ı					Unknown					
Epicoc	cum					Epicoccum	ı					Epicoccum					
Hyphal Fragme	ents*					Hyphal Fragments	*					Hyphal Fragments*	1	15	26	26	0.9%
Total Raw	Ct: 11		Total s	sp/m ³ :	286	Total Raw Ct	: 14	T	otal s	sp/m ³ :	364	Total Raw Ct:	111		Total s	sp/m ³ :	2886
	Com	iments					Comme	nts					Comme	nts			

ASTM D7391-09 Spore Trap Analysis Report

Chain of Custody: Client: Address: Attention:	324881 ATI, Inc. 9220 Rumsey R Suite 100 Columbia, MD 2 Nate Burgei					Job Location:NoJob Number:20	eabrook Ele ot Provided 0-691 ot Provided	mentary				Date Submitted: Person Submitting: Date Analyzed: Report Date:		02/25/2021 Nate Burgei 02/25/2021 02/25/2021		
AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location		324881-7 31569788 CD Air-O-Cell 150 Acceptable 1 Room 18				AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location	3 C A 1 2	24881-8 1569741 D ir-O-Cell 50 cceptable Outdoors				AMA Sample # Client ID Analyst ID Collection Apparatus Sample Volume (L) Sample Condition Debris Loading Location	3248 3156 CD Air-C 0 Acce 0 Blanl	9742 I-Cell ptable		
	Raw Ct	Trav/Flds	A.S.	sp/m ³	%		Raw Ct	Trav/Flds	A.S.	sp/m ³	%		Raw Ct	Trav/Flds	A.S. sp/m ³	%
Alterr	naria					Alternaria						Alternaria				
Ascosp	ores					Ascospores	5	15	26	130	31.3%	Ascospores				
Basidiosp	oores 5	15	26	130	6.3%	Basidiospores	8	15	26	208	50%	Basidiospores				
Bipolaris/Drechslera/H	lelm.					Bipolaris/Drechslera/Helm.						Bipolaris/Drechslera/Helm.				
Chaeton	nium					Chaetomium						Chaetomium				
Cladospo	orium 2	15	26	52	2.5%	Cladosporium						Cladosporium				
Curvu	ılaria					Curvularia						Curvularia				
Penicillium / Asperg	gillus 71	15	26	1846	89.9%	Penicillium / Aspergillus	3	15	26	78	18.8%	Penicillium / Aspergillus				
Smuts/Periconia/Myxomyc	cetes 1	15	26	26	1.3%	Smuts/Periconia/Myxomycetes						Smuts/Periconia/Myxomycetes				
Stachybotrys/Memnor	niella					Stachybotrys/Memnoniella						Stachybotrys/Memnoniella				
♦ Uloclad	dium					Ulocladium						Ulocladium				
Unkn	nown					Unknown						Unknown				
Epicoc	cum					Epicoccum						Epicoccum				
Hyphal Fragme	ents [*] 1	15	26	26	1.3%	Hyphal Fragments*						Hyphal Fragments [*]				
Total Raw	Ct: 79		Total s	sp/m ³ :	2054	Total Raw Ct:		т	otal s	sp/m³:	416	Total Raw Ct:	0		Total sp/m ³ :	0
	Com	nments					Comme					No M	Comments lold Spores O			

ASTM D7391-09 Spore Trap Analysis Report

Chain of Custody:	324881	Job Name:	Seabrook Elementary	Date Submitted:	02/25/2021
Client:	ATI, Inc.	Job Location:	Not Provided	Person Submitting:	Nate Burgei
Address:	9220 Rumsey Road	Job Number:	20-691	Date Analyzed:	02/25/2021
	Suite 100	P.O. Number:	Not Provided	Report Date:	02/25/2021
	Columbia, MD 21045				
Attention:	Nate Burgei				

Spore Comparison Guide

The criteria for these specifications are outlined, but not limited to those listed, below. Final specifications may differ from the listed criteria for certain samples. AMA Analytical Services, Inc. reserves the right to make changes to these criteria at any time without notice.

Normal ecology	Slightly above normal ecology	Moderately above normal ecology	Substantially above normal ecology	

Stachybotrys / Memnoniella, and Chaetomium	Other Spores* (Control Present)	Other Spores* (No Control)
1-4 Spores: Yellow	< 10 Spores: Insignificant (no color)	< 10 Spores: Insignificant (no color)
5-9 Spores: Orange	<= Control's spore count: Green	10-20 Spores: Yellow
10+ Spores: Red	Between Control and 2x Control: Yellow	20-50 Spores: Orange
	Between 2x Control and 3x Control: Orange	50+ Spores: Red
	3x+ Control: Red	

*No evalutation is provided for the following spore types: Other, Other Colorless, and Unknown Fungi, and Misc

Interpretation of the data contained in this report is the sole responsibility of the client or the persons who conducted the field work. There are no federal or national standards for the number of fungal spores that may be present in the indoor environment. As a general rule and guideline that is widely accepted in the indoor air quality field, the numbers and types of spores that are present in the indoor environment should be comparable to those that are present outdoors at any given time. There will always be some mold spores present in "Normal" indoor environments. The purpose of sampling and counting spores is to help determine whether an abnormal condition exists within the indoor environment and if it does, to help pinpoint the area of contamination. Spore counts should not be used as the sole determining factor of mold contamination. There are many factors that can cause anomalies in the comparison of indoor and outdoor samples due to the dynamic nature of both of those environments.

This report is provided for informational and comparative purposes only and should not be relied upon for any other purpose. Sampling techniques, possible contaminants, unrepresentative samples and other similar or dissimilar factors may affect these results. With the statistical evaluation provided, as with all statistical comparisons and analyses, false-positive and false-negative results can and do occur. AMA Analytical Services, Inc. hereby disclaims any liability for any and all direct, indirect, punitive, incidental, special or consequential damages arising out of the use or interpretation of the data contained in, or any actions taken or omitted in reliance upon, this report.

ASTM D7391-09 Spore Trap Analysis Report

Chain of Custody:	324881	Job Name:	Seabrook Elementary	Date Submitted:	02/25/2021
Client:	ATI, Inc.	Job Location:	Not Provided	Person Submitting:	Nate Burgei
Address:	9220 Rumsey Road	Job Number:	20-691	Date Analyzed:	02/25/2021
	Suite 100	P.O. Number:	Not Provided	Report Date:	02/25/2021
	Columbia, MD 21045				
Attention:	Nate Burgei				

General Comments, Disclaimers, and Footnotes

Analytical Method:	Sample are analyzed following the instructions and guidelines outlined in ASTM 7391-09.
Sample Condition:	Acceptable: The sample was collected and delivered to the our location without disturbing the material on the sampling media. Unacceptable: 1. The sample trace (TR) has been disturbed. 2. The sample was damaged or otherwise unsuitable for analysis. 0 = No particulate matter detected; 1= >nd-~5% Particulate Loading; 2 = ~5%-25% Particulate Loading; 3 = ~25%- 75% Particulate Loading; 4 = ~75%-90% Particulate Loading; 5 = >90% Particulate Loading
Spore Notes:	Based on their small size and very few distinguishing characteristics, Aspergillus and Penicillium cannot be differentiated by non-viable sampling methods. There are other types of spores whose morphology is similar to Aspergillus and Penicillium and cannot be differentiated by non-viable sampling methods. Examples of these similar spores are Acremonium, Paecilomyces, Wallemia, Trichoderma, Scopulariopsis, and Gliocladium. Smuts, Periconia and Myxomycetes are three different types of genera that have similar morphological characteristics. Bipolaris/Dreschlera/Helm: Bipolaris / Dreschlera / Helminthosporium are three different types of genera that have smiliar morphological characteristics. Other Colorless represents all colorless spores that are non-distinctive and unidentifiable. 'Hyphal Fragments: A portion of the mycelium that becomes separated from the remainder of the thallus (vegetative body), each of which has the capacity to grow and form new individuals. Results for hyphal fragments are in fragments/m3 and are not incorporated in the total spore concentration. The droplet symbol () refers to water-intrusion indicator spores. These fungal spores, when found on indoor air samples, can be an indication of moisture sources and resultant fungal growth that may be problematic.
Quantification:	Analytical Sensitivity (A.S.): This is dependent on the volume of air collected, size of the trace, ocular diameter, and the amount of the trace that was analyzed. The value of "Present" indicated in the Raw Count column represents the presence of this spore type during the preliminary exam at 400x. The Raw Count converts to a whole number if the spore type is encountered again during the 600x-1,000x enumeration. The sp/m3concentration will be reported as less than the analytical sensitivity if "Present" is reported in the Raw Count. Results are reported to 3 significant figures. sp/m3: Spores per cubic meter. Uncertainty: for raw count in the range of 0-50 the SR is 0.375, 51-100 SR=0.333, 101-200 SR=0.257, >200 SR=0.245 All results are to be considered preliminary and subject to change unless signed by the Technical Director or Deputy. Analyst(s): Christopher Dell Technical Director

Technical Director Tristan Ward

This report applies only to the sample, or samples, investigated and is not necessarily indicative of the quality or condition of apparently identical or similar products. As a mutual protection to clients, the public, and these Laboratories, this report is submitted and accepted for the exclusive use of the client to whom it is addressed and upon the condition that it is not to be used, in whole or in part, in any advertising or publicity matter without prior written authorization from us. Sample types, locations, and collection protocols are based upon the information provided by the persons submitting them and, unless collected by personnel of these Laboratories, we expressly disclaim any knowledge and liability for the accuracy and completeness of this information. Residual sample material will be discarded in accordance with the appropriate regulatory guidelines, unless otherwise requested by the client.

MOLD SPORE DESCRIPTIONS

Ascospores

Ascospores are spores formed inside an ascus (asci-plural) or sac-like cell which is contained inside a fruiting body called an ascocarp or an ascoma (ascomata-plural). An ascus typically contains a definite nuimber of ascospores, usually eight. Ascospores are unique in shape, size, and color as to the Genus/species they represent. These spores are specific to fungi classified as Ascomycetes. They are ubiquitous in nature. Many decay organic matter, others are plant or animal pathogens. They can grow indoors on damp materials. Release of ascospores are released by forcible ejection and dispersed by wind, water, animals and other agents. Health Effects: Depending on the Genera, Ascospores may be allergenic.

Basidiospores

Basidiospores are reproductive spores produced by a group of fungi called basidiomycetes. This group includes the mushrooms, shelf fungi and various other macrofungi. Basidipspores serve as the main air (wind) dispersal units for the fungi and their release is dependent upon moisture. The structure of the spore complex can develop in various manners resulting in different appearances. It is often found growing in soil, decaying plant debris, compost piles and fruit rot. Indoors, it can be found on water damaged building materials (chipboard /OSB, plywood, wallpaper, and glue) as well as on food items (dried foods, cheeses, fruits, herbs, spices, cereals). Health effects: Some basidiospores may produce toxins and can act as allergens. They have not been reported to be pathogens.

Cladosporium

Cladosporium is the most common indoor and outdoor mold. The spores are wind dispersed and are often extremely abundant in outdoor air. Many species are commonly found on living and dead plant material. Indoors, they may grow on surfaces with high moisture or high humidity levels such as damp window sills, poorly ventilated bathrooms and soiled refrigerators. It produces powdery or velvety olive-green to brown or black colonies. The conidia (spores) vary depending on the species and are formed in simple or branching chains with multi-attachment points. Health Effects: Cladosporium species are rarely pathogenic to humans, but have been reported to occassionally cause sinusitis and pulmonary infections as well as infections of the skin and toenails. The airborne spores are significant allergens, and in large amounts they may severely affect asthmatics and people with respiratory diseases.

Epicoccum

Epicoccum is a cosmopolitan fungus that is often found growing outside in soil, plant litter, decaying plants, and damaged plant tissue. Indoors, it can be found growing on a variety of building materials including paper and textiles. Colonies have a rapid growth rate with cottony texture, initially yellow or orange becoming brown to black in color. Conidiophores or fruiting bodies produce dense masses where conidia (spores) arise. Spores are round to pear-shaped, smooth to warty, brown to black in color and muriform (partitioned in both directions, like a soccer ball). Health Effects: This mold can act as a potential allergen. Some people may experience hay fever and or asthma. This mold has not been linked to any human or animal infection.

Hyphal Fragments

Hyphal Fragments are segments or pieces of hyphae or mycelium that may have broken off during sampling (air, tape, dust). The mycelium is the entire mass of hyphae that makes up the vegetative body of a fungus. The presence of hyphal fragments may indicate the presence of viable mold.

Penicillium/Aspergillus Like

Penicillium and Aspergillus are ubiquitous, filamentous fungi that are found in soil, decaying plant debris, compost piles, and in the air. Indoors, spores are commonly found in house dust, in water-damaged buildings (wallpaper, wallpaper glue, decaying fabrics, moist chipboards, and behind paint) as well as fruit and grains. They are the most common fungal genera, worldwide. Both produce chains of spores that are small, round to oval, colorless or slightly pigmented, and smooth to rough walled. These spores are indistinguishable between the two as well as other genera, such as Gliocladium, Trichoderma, Paecilomyces, and Scopulariopsis. They differ as to their conidiophores or fruiting bodies. While, Aspergillus spores are produced from phialides supported on conidia heads or swollen vesicles, Penicillium spores are produced on finger-like projections. Depending on species, typical colonies of Aspergillus are initially white and later turn to either shades of green, yellow, orange, brown or black. Texture is usually velvety to cottony. Typical colonies of Penicillium, other than Penicillium marneffei (yeast-like at 37oC), grow rapidly, white in color at first, later becoming bluish green with white borders with velvety to powdery textures depending on species. Some species produce radial patterns. Health Effects: Both Aspergillus and Penicillium are potential allergens. Several species of Aspergillus (A. flavus and A. parasiticus) produce aflatoxins or natually occurring mycotoxins that are toxic and carcinogenic. These are found in contaminated foodstuff and are hazardous to consumers. Penicillium has only one known species that is pathogenic to humans (P. marneffei) that causes lethal systemic infection (Penicilliosis) in immunocompromised individuals.

Smuts/Periconia/Myxomycetes

Smuts, Periconia, and Myxomycetes spores are grouped together due to their similar round, brown morphology. Smuts are outdoor parasitic plant pathogens. They rarely grow indoors but may grow on host plants if appropriate conditions are present. They are parasitic plant pathogens. They can be found on cereal crops, grasses, flowing plants, weed, and other fungi. They can cause allergies. Periconia are found in soils, dead herbaceous stems and leaf spots, and grasses. They have wind dispersed dry spores. Their spores are abundant in the air but it is not known if they are allergenic. Myxomycetes are found on decaying logs, stumps and dead leaves. They have wind-dispersed dry spores and wet motile (amoebic phase) spores. During favorable conditions they move about like amoebae. They form dry airborne spores when conditions are unfavorable. They are rarely found indoors. Health Effects: They may cause Type 1 allergies (hay fever, asthma). No human infections have been reported.

AMA Analytical Services, Inc. Focused on Results www.amalab.com

K

~

 Focused on Results
 www.amalab.com

 AIHA-LAP (#100470) NVLAP (#101143-0) NY ELAP (10920)

 4475 Forbes Blvd. • Lanham, MD 20706

 (301) 459-2640 • (800) 346-0961 • Fax (301) 459-2643

(Please Refer To This Number For Inquires)

324881

Mailing/Billing Inform	nation:				Sub	mittal	Info	rmatio	n:		<u>ل</u>	-1			• 1						
1. Client Name:	ATT INC	-	01.	1	1							614	me	nta	<u>~</u>				·		
2. Address 1: 3. Address 2:	9201 to	1 bress	bine	ય	2	lob Lo	catio	n:													
3. Address 2:	LANTITUL	140			3	Job #:			<u> 20</u> .	<u>-64</u>	<u> </u>					P.C).#:			9 4 9 S	
 Address 3: Phone #: 					4. (Contac	ct Pers	son:	<u> </u>	Jale	$-B_{c}$	roje	<u>ر'</u>			_ Ce	11:	<u>614</u>	786	9 S	9/9
					5. (Collec	ted by	/:		Nat	<u>e</u> B	why	ei 🗌			_ Ce	11:				
	nfo (Results provide	d as soon as	technic						vided,	AMA	will	assign	defa	ults of	f 5-Da	iy and				on file.	
	ust be pre-scheduled)		4 Hours		NORMAL BUSI										,			ORT T			
4 Hours Late N Immediate Date Due			Same D	U 3	Day Day	1.		Results	Requi	red By	Noon) Ema	il:	nate	<u>, 50</u>	<u>rge</u>	ie	ativ	1 <u></u>	n
	e:		Next Da	ay Date	Day + 212	[4		(Additic	onal fee	may ap	ply)		Ema	il 2:	Co	urt	rey	e	atii	AC-CO	n
Comments:		U	2 Day			i.							Vert	oals:							
Asbestos Analysis				TEM Bulk							Me	tals Ar	ıalysis								
*PCM Air - Please Indica	te Filter Type:			ELAP 19	98.4/Chatfield 2 PLM/TEM Ash lite		(Q	TY)				D Pb	Paint	Chip 🕻	⊒%b	y Wei	ght _	(QTY) 🗆	mg/cm ² .	(QTY
NIOSH 7400 Fiberglass	(QTY)				Ash	(OTY	$\overline{0}$	1)					b Dust	Wipe	(wipe t	type	~))	(Q1	(Y)
TEM Air* - Please Indica	te Filter Type:				lite	QTY)						Soil/S	olid		_(Q11) (OTY)				
🔾 AHERA	(QTY)			TEM Dust*	res/abs) Vacuum/D				ועדר			🖵 Pb	TCLP			_(QT	(QTY) Y)				
NIOSH 7402	(QTY)	(OTY)		Quan. (s	/area) Vacuum D5	755-95			(QT)	Y)		Dri	inking	Water	D Pb_	(QTY)	Cu_	(QT)	0	
PLM Bulk				🖵 Quan. (s	/area)Dust D6480-	99		(Q	TY)										(QTY)		
EPA 600 – Visual	Estimate(QTY)	_ (QTY) 🗅 Po:	s Stop	TEM Water		(0	773 (1)				Fu										~ .
□ NY State Friable 1	98.1 (01	ry)			res/abs) 98.2/EPA 100.2		(ΟΤΥ				Col	llection	і Арра	ratus f	or Spo	re Trap	os/Air S	Samples:	BUCK	Biogive
Grav. Reduction E	LAP 198.6(Q	(QTY)		EPA 100).1(QTY)		~·· /					llection	n Medi	a		<u>- 714</u>	<u>0~(e</u>	Ц	Durt	(071)
)	(QTY)		All sam	oles received in goo	od cond	lition u	nless c	therwi	se note	ed.	□ *Si	pore-1 urface	rap <u> </u>		UTY (OTY)		Surrace	vacuum	Dust	_ (QTY)
MISC Asbestos Soil ASTM D7521	PLM(Qual) PLM(Qu	iari) PLM/TEM (Oual)		y (TEM Water san										(
PLM/TEM (Quan)				If field data	sheets are submitted, t	here is n	o need t	to comp	ete bott	om sect	ion.	🗅 Oth	er (Spec	ify	_)	_(QTY	ť,				
*It is recommended that bla	nk samples be submitted with all a		\$			AN	ALYS	IS		. 0		M	ATRE	ĸ.					CON	AMENTS	1
CLIENT ID #	SAMPLE INFORMA			DATE/ TIME	VOL (L)/ Wipe Area	1 📓	13		1 3	ថ្នី	1 3	13	15	55		APE	M	/ SI	PECIAL	INSTRU	CTIONS
31569773	ROOM	10.	Z/	25 9:54	1501					-5-			_7		X						
31569710	ROOM	13	1	10:06	1506										X						
31569789	ROOM			10'.18	1506		Ì								Χ						
3156 9716	Cateters	a		10:30	1500										x						
3156 9740	MAIN O	FFICE		10:42	1500		, i								$\boldsymbol{\lambda}$						
3156 9803	ROOM	5		10:54	1501										X						
31569788	ROOM	18	\rightarrow	11:07	150C		<u>}</u>								¥						
31569741	OUTDO			11:20	1506										¥.						
31569742	Blank	<u> </u>			NO OL										X			 			
				·	G t										Ø						
															_						
and the second second		· · · ·					. 4	<u> </u>				1									
T		t Name			A Signature			-		Dat	e I _ ·			Time		- -			Shipping	Information	
Relinquished by:	Nate 1	<u>Kurgel</u>			WZ <				21	151	21			45			🗆 UPS 🗌 Fedi		Ha Person	🗆 Othe	ſ
Received by:	d			· · ·	XA)			21	25	2		111	15				s \	Drop Box		

Appendix B: Instrument Calibration Records

Certificate of Calibration

() Buck™ BioAire Pump Calibration Rotameter () BuckTM BioSlide Pump Calibration Rotameter

Serial number: R15046

Date Calibrated: 11/12/2020 Calibration Due Date: 11/12/2021

Flow Calibration

This is to certify that the rotameter listed above has been calibrated using a Buck Primary calibrator listed below which is calibrated according to A.P. Buck, Inc. calibration procedure APB-1, Ver. 6.2 and is traceable to the National Institute of Standards & Technology (N.I.S.T). A.P. Buck guarantees the accuracy of the rotameter to be within \pm 5% of the actual flow rate.

AMBIENT CONDITIONS: Temperature $74\pm3^{\circ}$ F Relative Humidity $50\pm10\%$

Description	MFR.	Model	Serial #
Primary Calibrator	A.P. Buck Inc.	M30B	□ A40020 □ A40021
QA Appr	oval By: NO	oran' M	Nent

Information contained in this document should not be reproduced in any form without the written consent of A.P. Buck, Inc. It is for reference only and cannot be used as a form of endorsement by any private or governmental regulatory body.

> A.P. BUCK, INC. 7101 Presidents Drive. Suite 110 Orlando, FL 32809 Phone: 407-851-8602 Fax: 407-851-8910

CERTIFICATE OF CALIBRATION AND TESTING

TSI Incorporated, 500 Cardigan Road, Shoreview, MN 55126 USA Tel: 1-800-874-2811 1-651-490-2811 Fax: 1-651-490-3824 http://www.tsi.com

Environment Conditions							7575-X			
TEMPERATURE		70.72 (21.5)	°F (°C)	MODEL				1313-X		
RELATIVE HUMIDIT	Y	39.0	%RH				7	7575X1711006		
BAROMETRIC PRESS	SURE	29.15 (987.1)	1) inHg (hPa)				1	575×1711000		
🖾 AS LEFT 🗌 AS FOUND	- C A L	IBRATI		TOLERA JT OF TO	DLER	ANCE	RESULT	s –		
THERMO COUPL	E		Syst	EM PR	ESS	URE01-02		Unit: °F (°C)		
	1			# STANDARD MEASUREE		te compos				
# STANDARD	MEASURED	ALLOW	ABLE RANGE	11	STA	NDARD	MEASURED	ALLOWABLE RANGE		
# STANDARD 1 70.9 (21.6)	MEASURED 70.8 (21.6)		ABLE RANGE 9 (20.5-22.7)		STA	NDARD	MEASURED	ALLOWABLE RANGE		
	70.8 (21.6)		9 (20.5-22.7)			URE01-02	MEASURED	ALLOWABLE RANGE Unit: inHg (hPa)		
1 70.9 (31.6)	70.8 (21.6)	68.9-72	9 (20.5-22.7)	EM PR			MEASURED			

TSI does hereby certify that the above described instrument conforms to the original manufacturer's specification (not applicable to As Found data) and has been calibrated using standards whose accuracies are traceable to the United States National Institute of Standards and Technology (NIST) or has been verified with respect to instrumentation whose accuracy is traceable to NIST, or is derived from accepted values of physical constants. TSI's calibration system is registered to ISO-9001:2015.

Measurement Variable Temperature Pressure

System ID E004626 E003982

Last Cal. Cal. Due 02-14-20 02-28-21 01-24-20 07-31-20

Measurement Variable Pressure DC Voltage

System ID	Last Cal.	Ca
E005254	10-10-19	10-
E003493	08-14-19	08-

Last Cal.	Cal. Due
10-10-19	10-31-20
08-14-19	08-31-20

ChaoVang

CALIBRATED

June 15, 2020

DATE

6	R.
V	P

CERTIFICATE OF CALIBRATION AND TESTING

TSI Incorporated, 500 Cardigan Road, Shoreview, MN 55126 USA

Tel: 1-800-874-2811 1-651-490-2811 Fax: 1-651-490-3824 http://www.tsi.com

EN	VIRONMENT CO	NDITIONS				ODEL			7575-X	
TEMPERATURE 70.68			70.68 (21.5	68 (21.5) °F (°C)		MODEL				
Relative Humidity		38.0	%RH	SERIAL NUMBER		7	575X1711006			
BAROMETRIC PRESSURE			29.16 (987.5) inHg (hPa)			JERIAL INUMBER				
	□ As Left ⊠ As Found	- C A L I	BRAT		Tolei jt of ' I F I	foler	ANCE	RESULTS	<u>s –</u>	
Ти	IERMO COUPLE			Syst	EM PI	RESS	URE01-02		Unit: °F (°C	
#	STANDARD	MEASURED	ALLC	WABLE RANGE	#	STA	NDARD	MEASURED	ALLOWABLE RANGE	
1	70.8 (21.6)	71.1 (21.7)	68.8~	72.8 (20.4~22.7)						
BA	ROMETRIC PR	ESSURE		Syst	EM P	RESS	URE01-02		Unit: inHg (hPa)	
#	STANDARD	MEASURED	A	LLOWABLE RANG	E	#	STANDARD	MEASURED	ALLOWABLE RANGE	
1	29.22 (989.5)	29.17 (987.8)	28.6	4~29.80 (969.9~100	9.1)					

TSI does hereby certify that the above described instrument conforms to the original manufacturer's specification (not applicable to As Found data) and has been calibrated using standards whose accuracies are traceable to the United States National Institute of Standards and Technology (NIST) or has been verified with respect to instrumentation whose accuracy is traceable to NIST, or is derived from accepted values of physical constants. TSI's calibration system is registered to ISO-9001;2015.

Measurement Variable Temperature Pressure

System ID E004626 E003982

Measurement Variable Pressure DC Voltage

System ID	Last C
E005254	10-10-
E003493	08-14-

ast Cal.	Cal. Due
0-10-19	10-31-20
8-14-19	08-31-20

Chao Vang Verified

June 15, 2020 DATE

Cal. Due 02-28-21

07-31-20

Last Cal. 02-14-20 01-24-20

EN	- Completion	NS			Мо	DEL			982
	NVIRONMENT CONDITIO	74	.0 (23.3) °F (°C)	INIC				P17100007
	ELATIVE HUMIDITY		34 %R		SEF	HAL NUMB	ER		P1/100001
	AROMETRIC PRESSURE	29.:	20 (988.8) inH	lg (hPa)		NICE			
F	AS LEFT					OLERANCE			
			BRATIO		EL	CATIO	N	RESUL	т s –
-		CALIE	RATIO	N VERI	FI	CA110			Unit: pp
	GAS CO2 AS FOUND				SYST #	EM G-101 Standard	T	MEASURED	ALLOWABLE RANGE
	# STANDARD ME.	ASURED	ALLOWABI		4	3015.3		* 2902.7	2924.9~3105.8 4904.3~5207.7
		0	0~: 449~		5	5056		* 4859.6	4904.3-3201.1
	2 499	458	952~						Unit: p
	3 1002	963			SVS	гем G-101			ALLOWABLE RANGE
Г	GAS CO AS FOUND		A	BLE RANGE	#	STANDARI	>	MEASURED	97.5~103.5
	# STANDARD MI	EASURED		~38.1	2	100.5		* 84.8	Unit: °F (
	35.1	* 29.5			SVS	TEM T-101			Unit: "F (ALLOWABLE RANGE
	TEMPERATURE AS	FOUND	DATE DAT	NGE # S	STANE	ARD		SURED	139.02~141.02 (59.45~60.5
	# STANDARD MEAS	URED AL	.1~33.1 (-0.5~	100		60.01) *	41.3	1 (60.73)	Unit: %
	1 32.1 (0.0) 32.8	(0.4) 31	.1~55.1 (0.0		SV	STEM H-102			ALLOWABLE RANG
	HUMIDITY AS FOU	JND		BLE RANGE	#	T a way		MEASURED	67.0~73.0
	# STANDARD N	IEASURED	ALLOWA)~13.0	4	70.0		67.1 * 85.88	87.01~93.01
	1 10.0	<u>10.4</u> 29.3		.0~33.0	5	90.01		* 85.00	
	2 30.0	48.5		.0~53.0		1		*/	ndicates Out-of-Tolerance Co
M	5								A Viendards and
ANAN JEER WAANAA J	5	s been verifie I's calibratio	Last (1) Last (1) 4095 04-06 4095 04-06 8 05-15 41 09-02 525 01-00 54467 08-11 557 02-1	Stered to ISO-9 Cal. Cal. Du 5-20 04-06-2 9-20 05-19-2 3-19 09-30-2 6-20 01-31-2 3-19 08-12-2	25 28 20 21 22 21 22	e original man able to the Un topse accuracy 015. <u>Measureme</u> 200 CO Air Flow Flow Flow 100 C4H8 Temperatu Humidity	<u>nt Va</u>	riable <u>Syster</u> 14988 T179 E003 E003	m ID Last Cal. Cal. Du 36 04-30-20 03-24-2 39 04-09-20 04-09-3 980 04-22-20 04-30-3 342 09-03-19 09-30-3 07339 03-24-20 03-24-4 0658 02-14-20 02-28-3
	TSI does hereby certify th data) and has been calibr Technology (NIST) or ha of physical constants. TS. <u>Measurement Varia</u> 5000 CO2 N2 Flow Flow 2000 C4H8 Temperature	s been verifie I's calibratio <u>ble</u> <u>Svsten</u> 14A04 T-0603 E0033 E0035 EB002 E0106	Last (1) Last (1) 4095 04-06 4095 04-06 8 05-15 41 09-02 525 01-00 54467 08-11 557 02-1	Stered to ISO-9 Cal. Cal. Du 5-20 04-06-2 0-20 05-19-2 3-19 09-30-2 6-20 01-31-2 3-19 08-12-2 4-20 02-28-2	25 28 20 21 22 21 22	Measureme 200 CO Air Flow Flow 100 C4H8 Temperatu	<u>nt Va</u>	riable <u>Syste</u> 14983 T179 E003 E003 CC56 E010 E003	m 1D Last Cal. Cal. Du 36 04-30-20 03-24-2 39 04-09-20 04-09-2 980 04-22-20 04-30-3 342 09-03-19 09-30-0 07339 03-24-20 03-24-2 04-09-20 04-30-3 04-30-3 0558 02-14-20 02-28-3 0539 02-26-20 08-31-3 15, 2020 15, 2020
	TSI does hereby certify th data) and has been calibr Technology (NIST) or ha of physical constants. TS. <u>Measurement Varia</u> 5000 CO2 N2 Flow Flow 2000 C4H8 Temperature	s been verifie I's calibratio <u>ble</u> <u>Svsten</u> 14A04 T-0603 E0033 E0035 EB002 E0106	Last (1) Last (1) 4095 04-06 4095 04-06 8 05-15 41 09-02 525 01-00 54467 08-11 557 02-1	stered to ISO-9 Cal. Cal. Du 5-20 04-06-2 9-20 05-19-2 3-19 09-30-2 6-20 01-31-2 3-19 08-12-2 4-20 02-28-1 1-20 01-31-2	20007:2 25 28 20 21 22 21 22 21 22	Measureme 200 CO Air Flow Flow 100 C4H8 Temperatu	<u>nt Va</u>	riable <u>Syste</u> 14983 T179 E003 E003 CC56 E010 E003	m ID Last Cal. Cal. Dr. 36 04-30-20 03-24-3 39 04-09-20 04-09-9 980 04-22-20 04-30-3 342 09-03-19 09-30-3 77339 03-24-20 03-24-3 9658 02-14-20 02-36-3 9539 02-26-20 08-31-3

CERTIFICATE OF CALIBRATION AND TESTING

TSI Incorporated, 500 Cardigan Road, Shoreview, MN 55126 USA Tel: 1-800-874-2811 1-651-490-2811 Fax: 1-651-490-3824 http://www.tsi.com

Environment Conditions					M	ODEL		982		
Γen	IPERATURE		70.41 (21.3)	°F (°C)						
REL	ATIVE HUMIDITY	(50.3	%RH	SE	RIAL NUMBI	P17100007			
3AF	ROMETRIC PRESS	METRIC PRESSURE 29.15 (987.1) inHg (hPa)								
	As Left				n Tolef)ut of 1	ANCE OLERANCE				
	LASTOUND	- C A L	IBRATI	ON VER	1.6.1	CATIO	N RESUL	т s —		
						EM T-101		Unit: °F (°C		
	MPERATURE V	MEASURED	ALLOWAR	LE RANGE		TANDARD	MEASURED	ALLOWABLE RANGE		
#	STANDARD 22.1 (0.0)	31.9 (-0.1)		(-0.5~0.6)		40.0 (60.0)	139.0~141.0 (59.5~60.6)			
					Syst	ЕМ Н-102		Unit: %R		
Hu	MIDITY VERI	T	1 11100	ABLE RANGE	#	STANDARD	MEASURED	ALLOWABLE RANGE		
-						DIANDAND				
#	STANDARD	MEASURED			4	70.0	69.5	67.8~72.2		
1	10.0	9.0	7	.8~12.2	4		69.5 88.7	67.8~72.2 87.8~92.2		
1	10.0 30.0	9.0 29.1	7	.8~12.2 7.8~32.2		70.0		0.1.2		
1	10.0	9.0	7	.8~12.2	4	70.0 90.0		87.8-92.2		
1 2 3	10.0 30.0	9.0 29.1 49.6	7	.8~12.2 7.8~32.2 7.8~52.2	4 5 Sys1	70.0 90.0 TEM G-101	88.7	87.8-92.2 Unit: pp		
1 2 3	10.0 30.0 50.0	9.0 29.1 49.6	7	.8~12.2 7.8~32.2 7.8~52.2 ABLE RANGE	4 5 Syst	70.0 90.0 EM G-101 STANDARD	88.7 MEASURED	87.8-92.2 Unit: pp		
1 2 3 C	10.0 30.0 50.0 02 GAS VERIF	9.0 29.1 49.6 ICATION	7 2' 4' ALLOW	.8~12.2 7.8~32.2 7.8~52.2 /ABLE RANGE 0-50	4 5 SYS1 # 4	70.0 90.0 EM G-101 STANDARD 3016	88.7 MEASURED 3012	87.8~92.2 Unit: pp ALLOWABLE RANGE 2926~3107		
1 2 3 C # 1	10.0 30.0 50.0 O2 GAS VERIF STANOARD	9.0 29.1 49.6 ICATION MEASURED	7 2' 4' ALLOW	.8~12.2 7.8~32.2 7.8~52.2 ABLE RANGE	4 5 Syst	70.0 90.0 EM G-101 STANDARD	88.7 MEASURED	87.8~92.2 Unit: pp ALLOWABLE RANGE		
1 2 3 C	10.0 30.0 50.0 02 GAS VERIF STANOARD 0	9.0 29.1 49.6 ICATION MEASURED 0	7 2 4 4 ALLOW	.8~12.2 7.8~32.2 7.8~52.2 /ABLE RANGE 0-50	4 5 SYS1 # 4	70.0 90.0 EM G-101 STANDARD 3016	88.7 MEASURED 3012	87.8~92.2 Unit: pp ALLOWABLE RANGE 2926~3107 4904~5208		
1 2 3 C 4 1 2 3	10.0 30.0 50.0 O2 GAS VERIF STANOARD 0 502 1005	9.0 29.1 49.6 ICATION MEASURED 0 502 1019	7 2 4 4 ALLOW	.8~12.2 7.8~32.2 7.8~52.2 (ABLE RANGE 0~50 (52~552	4 5 Syst # 4 5	70.0 90.0 EM G-101 STANDARD 3016	88.7 MEASURED 3012	87.8~92.2 Unit: pp ALLOWABLE RANGE 2926~3107 4904~5208 Unit: pp		
1 2 3 C # 1 2 3	10.0 30.0 50.0 O2 GAS VERIF STANDARD 0 502	9.0 29.1 49.6 ICATION MEASURED 0 502 1019	ALLOW	.8~12.2 7.8~32.2 7.8~52.2 (ABLE RANGE 0~50 (52~552	4 5 Syst # 4 5	70.0 90.0 EM G-101 STANDARD 3016 5056	88.7 MEASURED 3012	87.8~92.2 Unit: pp ALLOWABLE RANGE 2926~3107		

TSI does hereby certify that the above described instrument conforms to the original manufacturer's specification (not applicable to As Found data) and has been calibrated using standards whose accuracies are traceable to the United States National Institute of Standards and Technology (NIST) or has been verified with respect to instrumentation whose accuracy is traceable to NIST, or is derived from accepted values of physical constants. TSI's calibration system is registered to ISO-9001:2015.

Measurement Variable Temperature Temperture 5000 CO2 N2 Flow Flow 2000 C4H8	<u>System ID</u> E010657 E010655 14A044095 T-0608 E003241 E003525 EB0054467	Last Cal. 02-14-20 01-21-20 04-06-29 05-19-20 09-03-13 01-06-20 08-13-19	Cal Due 02-28-21 01-31-21 04-06-25 05-19-28 09-30-20 01-31-21 08-12-22	Measurement Variable Temperature Humidity 200 CO Air How Flow 100 C4!18	Svstem 1D E010658 E003539 149886 T17939 E003980 E003342 CC507339	Last Cal. 02-14-20 02-26-20 04-30-20 04-09-20 04-09-20 04-22-20 09-03-19 03-24-20	Cal. Due 02-28-21 08-31-20 03-24-28 04-09-28 04-30-21 09-30-20 03-24-28
--	--	---	---	--	---	---	--

Chao Varia CALIBRATED

June 16, 2020

DATE